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h i g h l i g h t s

• We analyze a critical C code involving floating-point computations.
• The code is dealing with rotations represented by quaternions.
• A functional requirement is given, about the norms of quaternions involved.
• We express the requirement in a formal specification language.
• Code is verified with respect to the specification using theorem proving.
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We report a case study that was conducted as part of an industrial research project on
static analysis of critical C code. The example program considered in this paper is an
excerpt of an industrial code, only slightly modified for confidentiality reasons, involving
floating-point computations. The objective was to establish a property on the functional
behavior of this code, taking into account rounding errors made during computations. The
property is formalized using ACSL, the behavioral specification language available inside
the Frama-C environment, and it is verified by automated theorem proving.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The objective of the U3CAT project1 was to design various kinds of static analyses of C source code, to implement them
inside the Frama-C environment [1], and to experiment them on critical industrial C programs. A part of this project was
focused on the verification of programs involving floating-point computations. Several case studies of this particular kind
were proposed by industrial partners of the project, and were analyzed using techniques based on abstract interpretation
and on deductive verification.

This paper reports one such case study. A functional property of its behavior is formalized using ACSL—the behavioral
specification language of Frama-C—and proved using a combination of automated theorem provers. These are either fully
automatic ones: SMT (Satisfiability Modulo Theories) solvers Alt-Ergo [2,3], CVC3 [4] and Z3 [5], the solver Gappa [6] for real
arithmetic; or the interactive proof assistant Coq [7].
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We first present in Section 2 the case study itself and the functional property that should be validated. We discuss
there why we believe this case study is interesting to publish. In Section 3 we describe the basics of the verification
environment in which we verified the program: Frama-C, the ACSL specification language [8] including its specific features
about floating-point computations, and the Jessie/Why plug-in [9–11] for deductive verification in Frama-C. We emphasize
an important point of the methodology we followed: in the first step, one should specify the program, and prove it, using
an idealized model of execution, where no rounding errors occur, that is where computations are assumed to be made
in infinite precision. This is the mode we use to perform a preliminary analysis of the case study in Section 4. Only in
the second step one should adapt the specifications, and the proof, to take into account rounding errors in floating-point
computations: this is done for our case study in Section 5.

2. Presentation of the case study

The case study was provided by the company Sagem Défense et Sécurité (http://www.sagem-ds.com/), which is part of the
larger group Safran. It is specialized in high-technology, and holds leadership positions in optronics, avionics, electronics and
critical software for both civil and military markets. Sagem is the first company in Europe and third worldwide for inertial
navigation systems used in air, land and naval applications.

The case study is an excerpt of a code related to inertial navigation, that deals with rotations in the three-dimensional
space. A standard representation of such rotations makes use of the mathematical notion of quaternions [12]. To perform the
verification of that case study, there is indeed no need to understand why or how this representation works. We summarized
below only the basic notions about quaternions that are needed for our purpose.

2.1. Quaternions in a nutshell

Basically, the set of quaternions H can be identified with the four-dimensional vector space R
4 over the real numbers.

As a vector space, H is naturally equipped with the operations of addition and multiplication by a scalar. A common notation
is made by choosing some basis denoted as (1, i, j,k), so that every quaternion q is uniquely written as a linear combination
q1 + q2i + q3 j + q4k. Using this basis, the multiplication of two quaternions can be defined thanks to the identities

i2 = j2 = k2 = −1

i j = k jk = i ki = j

ji = −k kj = −i ik = − j

leading to the formula

(q1 + q2i + q3 j + q4k) × (p1 + p2i + p3 j + p4k) = q1 p1 − q2 p2 − q3 p3 − q4 p4

+ (q1 p2 + q2 p1 + q3 p4 − q4 p3)i

+ (q1 p3 − q2 p4 + q3 p1 + q4 p2) j

+ (q1 p4 + q2 p3 − q3 p2 + q4 p1)k

It is worth to remind that multiplication is not commutative.
The norm of a quaternion is also defined, as

‖q‖ =
√

q2
1 + q2

2 + q2
3 + q2

4

Among other properties, an important property is that the norm of a product is equal to the product of the norms. Quater-
nions of norm 1 are of particular interest for representing rotations.

2.2. The source code

The source code that was given to analyze mainly amounts to repeatedly multiplying a quaternion by other quaternions
that come from some external sources of measure. The simplified source code is given in Fig. 1, where the external source
of quaternion is abstracted by the C function random_unit_quat returning an arbitrary quaternion. In C, a quaternion
is represented by an array of four double-precision floating-point numbers (type double). We remind that the precision of
type double is 53 binary digits, meaning that the relative precision of the representation of real numbers is approximately
10−16.

The arbitrary quaternions returned by function random_unit_quat are intended to be of norm 1, so the repeated
multiplication should in principle remain of norm 1 over time. However, due to the imprecision of the floating-point rep-
resentation, this property is not valid. First, the norm of those arbitrary quaternions cannot be exactly 1, only close to 1 up
to a small amount. Second, due to additional imprecisions of the computation of multiplication, the norm of the iterated
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