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The safety analysis of interlocking railway systems involves verifying freedom from colli-
sion, derailment and run-through (that is, trains rolling over wrongly-set points). Typically,
various unrealistic assumptions are made when modelling trains within networks in order
to facilitate their analyses. In particular, trains are invariably assumed to be shorter than
track segments; and generally only a very few trains are allowed to be introduced into the
network under consideration.
In this paper we propose modelling methodologies which elegantly dismiss these assump-
tions. We first provide a framework for modelling arbitrarily many trains of arbitrary length
in a network; and then we demonstrate that it is enough with our modelling approach to
consider only two trains when verifying safety conditions. That is, if a safety violation ap-
pears in the original model with any number of trains of any and varying lengths, then a
violation will be exposed in the simpler model with only two trains.
Importantly, our modelling framework has been developed alongside – and in conjunction
with – railway engineers. It is vital that they can validate the models and verification
conditions, and – in the case of design errors – obtain comprehensible feedback. We
demonstrate our modelling and abstraction techniques on two simple interlocking systems
proposed by our industrial partner. As our formalization is, by design, near to their way of
thinking, they are comfortable with it and trust it.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Formal verification of railway control software has been identified as one of the Grand Challenges of Computer Sci-
ence [1]. As is typical with Formal Methods, this challenge comes in two parts: the first addresses the question of whether
the mathematical models considered are legitimate representations of the physical systems of concern. The modelling of
the systems, as well as of proof obligations, needs to be faithful. The second part is the question of how to utilize available
technologies, for example model checking or theorem proving. Whichever verification process is adopted, it needs to be
both effective and efficient.

In a series of papers [2–5] we have been developing a new modelling approach for railway interlockings. This work
has been carried out in conjunction with railway engineers drawn from our industrial partner Invensys Rail. By involving
the railway engineers from the start, we benefit twofold: they provide realistic case studies, and they guide the modelling
approach, ensuring that it is natural to the working engineer.
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We base our approach on CSP‖B [6], which combines event-based with state-based modelling. This reflects the double
nature of railway systems, which involves events such as train movements and – in the interlocking – state based reasoning.
In this sense, CSP‖B offers the means for the natural modelling approach we strive for. The formal models are by design
close to the domain models. To the domain expert, this provides traceability and ease of understanding. This addresses
the first of the above stated challenges: faithful modelling. The validity of this claim was demonstrated in particular in [2]
where a non-trivial case study – a complex double junction – was provided which was understandable and usable by our
industrial partners.

In [3] we addressed the second challenge: that of how to effectively and efficiently verify safety properties within our
CSP‖B models. To this end we developed a set of abstraction techniques for railway verification that allow the trans-
formation of complex CSP‖B models into less involved ones; we proved that these transformations are sound; and we
demonstrated that they allow one to verify a variety of railway systems via model checking. The first set of abstractions
allows us to prove safety of a scheme plan which involves an unbounded number of trains by considering only a bounded
number of trains with the number dependent only on the number of routes in the scheme plan. Their correctness proof
involves slicing of event traces. Essentially, these abstractions provide us with finite state models. The second set of ab-
stractions simplifies the underlying track topology. Here, the correctness proof utilizes event abstraction specific to our
application domain similar to the ones suggested by Winter in [7]. These abstractions make model checking faster.

Still present in these approaches, however, are unrealistic assumptions about trains within networks: namely that the
trains are shorter than the track segments in the network, and that only a very few trains will ever enter the network. In
this paper we address these unrealistic assumptions. Firstly, we develop a modelling approach which incorporates train and
track lengths, allowing trains to span any number of track segments. Secondly, we provide an abstraction technique which
allows us to detect safety violations in networks involving an arbitrary number of trains by considering only two trains
(thus markedly improving on our previous result).

The paper is organised as follows. In Section 2 we discuss our modelling language CSP‖B. In Section 3 we introduce
railway concepts and our two case studies, and describe how they are modelled in CSP‖B. In particular, we outline in detail
the modelling of train and track lengths. In Section 4 we present our main result that considering two trains suffices in our
analyses for safety properties. The application of our approach is presented in Section 5 via verification of our example
scenarios. Finally, in Section 6 we put our work in the context of related approaches.

2. Background to CSP‖B

The CSP‖B approach allows us to specify communicating systems using a combination of the B Method [8] and the
process algebra CSP (Communicating Sequential Processes) [9]. The overall specification of a combined communicating
system comprises two separate specifications: one given by a number of CSP process descriptions and the other by a
collection of B machines. Our aim when using B and CSP is to factor out as much of the “data-rich” aspects of a system
as possible into B machines. The B machines in our CSP‖B approach are classical B machines, which are components
containing state and operations on that state. The CSP‖B theory [6] allows us to combine a number of CSP processes Ps in
parallel with machines Ms to produce Ps ‖ Ms which is the parallel combination of all the controllers and all the underlying
machines. Such a parallel composition is meaningful because a B machine is itself interpretable as a CSP process whose
event-traces are the possible execution sequences of its operations. The invoking of an operation of a B machine outside
its precondition within such a trace is defined as divergence [10]. Therefore, our notion of consistency is that a combined
communicating system Ps ‖ Ms is divergence-free and also deadlock-free [6].

A B machine consists of a collection of clauses and a collection of operations that query and modify the state. The
machine clause declares the abstract machine and gives its name. The variables clause declares the variables that are used
to carry the state information within the machine. The invariant clause gives the type of the variables, and more generally
it also contains any other constraints on the allowable machine states. The initialisation clause determines the initial state
of the machine.

Operations of a B machine are given in one of the following formats:

preconditioned operation – oo ←− op(ii) = PRE P THEN S END: if this is called when P holds then it will execute S , otherwise
it will diverge.

guarded event – op = SELECT P THEN S END: this will execute S when P holds, and will block when P is false.

The declaration oo ←− op(ii) for preconditioned operation introduces the operation: it has name op, a (possibly empty)
output list of variables oo, and a (possibly empty) input list of variables ii. The precondition of the operation is predicate P .
This must give the type of any input variables, and can also give conditions on when the operation can be invoked. If
it is invoked outside its precondition then divergence results. Finally, the body of the operation is S . This is a generalised
substitution, which can consist of one or more assignment statements (in parallel) to update the state or assign to the output
variables. Conditional statements and nondeterministic choice statements are also permitted in the body of the operation.
The guarded event simply has a name op. If its condition fails, then its execution is blocked rather than leading to a
divergence.

In combined communicating systems we also define B machines that do not have operations and only contain sets,
constants and invariants. These are included in order to provide contextual information to a system.
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