
Science of Computer Programming 96 (2014) 377–394

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Constructive polychronous systems ✩

Jean-Pierre Talpin a,∗, Jens Brandt b, Mike Gemünde b, Klaus Schneider b,
Sandeep Shukla c

a INRIA Rennes-Bretagne-Atlantique, France
b University of Kaiserslautern, Germany
c Virginia Tech, USA

h i g h l i g h t s

• Constructive semantic framework over a complete domain for imperative and declarative synchronous languages.
• First executable small-step operational semantics of polychronous data-flow languages.
• Characterization of program correctness (determinism, endochrony) by fixpoint properties.

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 March 2013
Received in revised form 19 March 2014
Accepted 7 April 2014
Available online 24 April 2014

Keywords:
Synchronous programming
Operational semantics
Constructive systems
Fixpoint theory
Program verification

The synchronous paradigm provides a logical abstraction of time for reactive system design
which allows automatic synthesis of embedded systems that behave in a predictable,
timely, and reactive manner. According to the synchrony hypothesis, a synchronous model
reacts to inputs by generating outputs that are immediately made available to the
environment. While synchrony greatly simplifies the design of complex systems in general,
it can sometimes lead to causal cycles. In these cases, constructiveness is a key property to
guarantee that the output of each reaction can still be always algorithmically determined.
Polychrony deviates from perfect synchrony by using a partially ordered, i.e., a relational
model of time. It encompasses the behaviors of (implicitly) multi-clocked data-flow
networks of synchronous modules and can analyze and synthesize them as GALS systems
or Kahn process networks (KPNs).
In this paper, we present a unified constructive semantic framework using structured
operational semantics, which encompasses both the constructive behavior of synchronous
modules and the multi-clocked behavior of polychronous networks. Along the way, we
define the very first executable operational semantics of the polychronous language Signal.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Languages such as Esterel [1], Quartz [2] or Lustre [3] are based on the synchrony hypothesis [4,5]. Synchrony is a
logical abstraction of time which greatly facilitates verification and synthesis of safety-critical embedded systems. In partic-
ular, it enforces deterministic concurrency, which has many advantages in system design, e.g. avoiding Heisenbugs (i.e. bugs

✩ This work is partially supported by INRIA associate project Polycore, by the Deutsche Forschungsgemeinschaft (DFG), by the US Air Force Research
Laboratory (grant FA8750-11-1-0042) and the US Air Force Office for Scientific Research (grant FA8655-13-1-3049).

* Corresponding author.
E-mail addresses: Jean-Pierre.Talpin@inria.fr (J.-P. Talpin), brandt@cs.uni-kl.de (J. Brandt), gemuende@cs.uni-kl.de (M. Gemünde), schneider@cs.uni-kl.de

(K. Schneider), shukla@vt.edu (S. Shukla).

http://dx.doi.org/10.1016/j.scico.2014.04.009
0167-6423/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2014.04.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:Jean-Pierre.Talpin@inria.fr
mailto:brandt@cs.uni-kl.de
mailto:gemuende@cs.uni-kl.de
mailto:schneider@cs.uni-kl.de
mailto:shukla@vt.edu
http://dx.doi.org/10.1016/j.scico.2014.04.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2014.04.009&domain=pdf


378 J.-P. Talpin et al. / Science of Computer Programming 96 (2014) 377–394

that disappear when one tries to simulate/test them), predictability of real-time behavior, as well as provably correct-by-
construction software synthesis [6].

It is also the key to generate deterministic single-threaded code from multi-threaded synchronous programs so that
synchronous programs can be directly executed on simple micro-controllers without using complex operating systems.
Another advantage is the straightforward translation of synchronous programs to hardware circuits [7] that allows one
to use synchronous languages in HW/SW co-design. Furthermore, the concise formal semantics of synchronous languages
allows one to formally reason about program properties [8], compiler correctness and worst-case execution time [9,10].

Under the synchrony hypothesis, computation progresses through totally ordered synchronized execution steps called
reactions. The computation involved in reacting to a particular input combination starts by reading the inputs, computing
the intermediate and the output values of the reaction, as well as the next state of the system. Each complete reaction is
referred to as a macro-step whereas computations during the reaction are called micro-steps. A reaction is said to happen at
a logical instant that abstracts the duration of a reaction to a single point in a discrete totally ordered timeline.

Consequently, and from a semantic point of view – which postulates that a reaction is atomic – neither communication
nor computation therefore takes any physical time in a synchronous instant. Even though this zero-time assumption does
not correspond to reality, it is where the power of the synchronous abstraction lies: zero delay is compatible to predictabil-
ity. If (1) the minimum inter-arrival time of two consecutive values on all inputs is long enough, and if (2) all micro-steps
in a reaction (macro-step) are executed according to their data dependencies, then the behaviors under the zero-time as-
sumption are the same as the behaviors of the same system in reality.

However, the synchronous abstraction of time also has a drawback: Since outputs are generated in zero-time, and since
synchronous systems can typically read their own outputs, there may be cyclic dependencies due to actions modifying their
own causes within the same reaction. These issues may lead to programs having inconsistent or ambiguous behaviors. In
the context of synchronous programs, they are known as causality problems, and various solutions have been proposed over
the years to tackle them.

The most obvious and pragmatic one is to syntactically forbid cyclic data dependencies which is simple to check but
rules out many valid programs. For example, the synchronous data-flow language Lustre follows this approach [11]. More
powerful algorithms for causality analysis are discussed in Section 2. One key advantage of Lustre is that it corresponds
to a strict subclass of Kahn networks in which all actors synchronize on every execution step, so called synchronous Kahn
networks [12]. Kahn networks are none to have a compositional asynchronous semantics [13].

In contrast to synchronous languages, the polychronous language Signal [14] follows a different model of computation.
Execution is not aligned to a totally ordered set of logical instants but to a partially ordered model of time. This allows
one to directly express (abstractions of) asynchronous computations which possibly synchronize intermittently. The lack of
a global reference of time offers many advantages for the design of embedded software.

First, it is closer to reality since at the system level, integrated components are typically designed based on different
clock domains or different paces, which is a desirable feature especially with the advent of, e.g., multi-core embedded
processors. Second, polychrony avoids unnecessary synchronization, thereby offering additional optimization opportunities.
Polychrony gives developers the possibility to refine the system in different ways, and compilers can choose from different
schedules according to non-functional mapping constraints, which are ubiquitous in embedded systems design. Due to these
advantages, Signal is particularly suited as a coordination layer on top of synchronous components to describe a globally
asynchronous locally synchronous (GALS) network.

As Signal makes use of the synchronous abstraction of time, it faces the same problems as other synchronous languages.
One way to overcome the causality problem is to syntactically forbid cyclic dependencies, but as stated before that is not
always possible, especially when composing separately specified processes. The Signal compiler uses a so-called conditional
dependence graph [15–17] to model dependencies between equations and to check that all equations in a syntactic cycle
cannot happen at the same logical instant. As discussed above, the synchronous languages are all based on slightly varying
notions of causality.

This mismatch makes it unnecessarily hard (if not impossible) to currently integrate, e.g., a set of reactive Quartz

modules with a Signal data-flow network: should the integration of modules and processes be limited/approximated by
syntactically causal data-flow networks instead of constructive ones? There is no fundamental reason why a common no-
tion of constructiveness should not exist for these languages. So, instead of an approach to causality analysis based on
syntactic cycle detection, we want to endow Signal with a constructive semantics compatible to that of languages like
Quartz, which is exactly what this paper presents.

2. Related work

As mentioned in the introduction, causality analysis performed in data-flow languages is a conservative approach to
checking the constructiveness of a system. However, mapping or composing models on platforms often requires the intro-
duction of pseudo-cycles [18–20]. Therefore, other synchronous languages like Esterel [1] opted for a more sophisticated
solution. Their semantics is given in terms of a constructive logic, and compilers perform a causality analysis [19–25]
based on the computation of fix-points in a three-valued logic similar to Brzozowski and Seger’s ternary simulation of
asynchronous circuits [26]. Thereby, cyclic dependencies are allowed as long as they can be constructively resolved. This



Download English Version:

https://daneshyari.com/en/article/434135

Download Persian Version:

https://daneshyari.com/article/434135

Daneshyari.com

https://daneshyari.com/en/article/434135
https://daneshyari.com/article/434135
https://daneshyari.com

