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We present new algorithms for the problem of multiple string matching of gapped patterns, 
where a gapped pattern is a sequence of strings such that there is a gap of fixed length 
between each two consecutive strings. The problem has applications in the discovery of 
transcription factor binding sites in DNA sequences when using generalized versions of 
the Position Weight Matrix model to describe transcription factor specificities. In these 
models a motif can be matched as a set of gapped patterns with unit-length keywords. 
The existing algorithms for matching a set of gapped patterns are worst-case efficient but 
not practical, or vice versa, in this particular case. The novel algorithms that we present 
are based on dynamic programming and bit-parallelism, and lie in a middle-ground among 
the existing algorithms. In fact, their time complexity is close to the best existing bound 
and, yet, they are also practical. We also provide experimental results which show that the 
presented algorithms are fast in practice, and preferable if all the strings in the patterns 
have unit-length.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

We consider the problem of matching a set P of gapped patterns against a given text of length n, where a gapped 
pattern is a sequence of strings, over a finite alphabet Σ of size σ , such that there is a gap of fixed length between 
each two consecutive strings. We are interested in computing the list of matching patterns for each position in the text. 
This problem is a specific instance of the Variable Length Gaps problem [3] (VLG problem) for multiple patterns and has 
applications in the discovery of transcription factor (TF) binding sites in DNA sequences when using generalized versions 
of the Position Weight Matrix (PWM) model to represent TF binding specificities. The paper [8] describes how a motif 
represented as a generalized PWM can be matched as a set of gapped patterns with unit-length keywords, and presents 
algorithms for the restricted case of patterns with two unit-length keywords.

In the VLG problem a pattern is a concatenation of strings and of variable-length gaps. An efficient approach to solve 
the problem for a single pattern is based on the simulation of nondeterministic finite automata [12,6]. A method to solve 
the case of one or more patterns is to translate the patterns into a regular expression [13,4]. The best time bound for 
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Table 1
Comparison of different algorithms for the multiple string matching with gapped pat-
terns problem. k-len(P) and len(P) are the total number of keywords and symbols 
in the patterns, respectively. gsize(P) is the size of the variation range of the gap 
lengths. α ≤ nk-len(P) and α′ ≤ nk-len(P) are the total number of occurrences in 
the text of keywords and pattern prefixes, respectively. K ≤ k-len(P) is the maxi-
mum number of suffixes of a keyword that are also keywords.

Time Reference

O (n logσ + α) Bille et al. [3]
O (n(logσ + K ) + α′) Haapasalo et al. [9]
O (n(logσ + log w�k-len(P)/w�) + occ) Bille and Thorup [4]
O (n(logσ + log2 gsize(P)�k-len(P)/w�) + occ) This paper
O (�n/w� len(P) + n + occ) This paper

a regular expression is O (n(k log w
w + logσ)) [4], where k is the number of the strings and gaps in the pattern and w

is the machine word size in bits. Observe that in the case of unit-length keywords k = Θ(len(P)), where len(P) is the 
total number of alphabet symbols in the patterns. There are also algorithms efficient in terms of the total number α of 
occurrences of the strings in the patterns (keywords) within the text [10,15,3].2 The best bound obtained for a single 
pattern is O (n logσ + α) [3]. This method can also be extended to multiple patterns. However, if all the keywords have 
unit length this result is not ideal, because in this case α is Ω(n len(P)

σ ) on average if we assume that the symbols in 
the patterns are sampled from Σ according to a uniform distribution. A similar approach for multiple patterns [9] leads 
to O (n(logσ + K ) + α′) time, where K is the maximum number of suffixes of a keyword that are also keywords and α′
is the number of text occurrences of pattern prefixes that end with a keyword. This result may be preferable in general 
when α′ < α. In the case of unit-length keywords, however, a lower bound similar to the one on α holds also for α′ , as 
the prefixes of unit length have on average Ω(n |P|

σ ) occurrences in the text. Recently, a variant of this algorithm based on 
word-level parallelism was presented in [18]. This algorithm works in time O (n(logσ + (log |P| + k

w )αm)), where k in this 
case is the maximum number of keywords in a single pattern and αm ≥ �α/n� is the maximum number of occurrences 
of keywords at a single text position. When α or α′ is large, the bound of [4] may be preferable. The drawback of this 
algorithm is that, to our knowledge, the method used to implement fixed-length gaps, based on maintaining multiple bit 
queues using word-level parallelism, is not practical.

Note that the above bounds do not include preprocessing time and the logσ term in them is due to the simulation of 
the Aho–Corasick automaton for the strings in the patterns.

In this paper we present two new algorithms, based on dynamic programming and bit-parallelism, for the problem of 
matching a set of gapped patterns. The first algorithm has O (n(logσ + gw-span�k-len(P)/w�) + occ)-time complexity, where 
k-len(P) is the total number of keywords in the patterns and 1 ≤ gw-span ≤ w is the maximum number of distinct gap 
lengths that span a single word in our encoding. This algorithm is preferable only when gw-span � w . We then show how to 
improve the time bound to O (n(logσ + log2 gsize(P)�k-len(P)/w�) + occ), where gsize(P) is the size of the variation range 
of the gap lengths. Note that in the case of unit-length keywords we have k-len(P) = len(P). This bound is a moderate 
improvement over the more general bound for regular expressions by Bille and Thorup [4] for log gsize(P) = o(

√
log w). 

This algorithm can also be extended to support character classes with no overhead. The second algorithm is based on 
a different parallelization of the dynamic programming matrix and has O (�n/w� len(P) + n + occ)-time complexity. The 
advantage of this bound is that it does not depend on the number of distinct gap lengths. However, it is not strictly on-line, 
because it processes the text w characters at a time and it also depends on len(P) rather than on k-len(P). Moreover, it 
cannot support character classes without overhead. The proposed algorithms obtain a bound similar to the one of [4], in the 
restricted case of fixed-length gaps, while being also practical. For this reason, they provide an effective alternative when α
or α′ is large. They are also fast in practice, as shown by experimental evaluation. A comparison of our algorithms with the 
existing ones is summarized in Table 1.

The rest of the paper is organized as follows. In Section 2 we recall some preliminary notions and elementary facts. In 
Section 3 we discuss the motivation for our work. In Section 4 we describe the method based on dynamic programming 
for matching a set of gapped patterns and then in Sections 5 and 6 we present the new algorithms based on it. Finally, in 
Section 7 we present experimental results to evaluate the performance of our algorithms.

2. Basic notions and definitions

Let Σ denote an integer alphabet of size σ and Σ∗ the Kleene star of Σ , i.e., the set of all possible sequences over Σ . 
|S| is the length of string S , S[i], i ≥ 0, denotes its (i + 1)-st character, and S[i . . . j] denotes its substring between the 
(i + 1)-st and the ( j + 1)-st characters (inclusive). For any two strings S and S ′ , we say that S ′ is a suffix of S (in symbols, 
S ′ 	 S) if S ′ = S[i . . . |S| − 1], for some 0 ≤ i < |S|.

2 Note that the number of occurrences of a keyword that occurs in r patterns and in l positions in the text is equal to r × l.
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