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Glynn Winskel has had enormous influence on the study of causal structure in computer
science. In this brief note, I discuss analogous concepts in relativity where also causality
plays a fundamental role. I discuss spacetime structure in a series of layers and emphasize
the role of causal structure. I close with some comparisons between causality in relativity
and in distributed computing systems.
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1. Introduction

Several years ago, in 1982 to be exact, I decided to abandon a career in relativity and quantum mechanics and retrain
myself as a theoretical computer scientist. I, like most of my physics colleagues of the time, was completely ignorant about
the field. Indeed many physicists had no idea that there was such a field. I recall one of them saying to me, “Theoretical
computer science! What is that about? Do you study ideal spherical computers?”

Initially, I was thinking rather unenthusiastically about job security and visa status rather than being excited about a new
intellectual adventure. I found two documents that changed that dramatically. The first was an article by Lamport [1] called
“Time, clocks and the ordering of events in a distributed system” and the other was Glynn Winskel’s remarkable thesis [2].
Both made me realize that I could think about my new subject mathematically and grapple with the foundational questions
that I loved in physics.

Since then Winskel and I become friends and have shared many exciting scientific discussions and drinks in pubs. I can
think of no better way of celebrating his continued youthful vigour by offering this little note that reflects some of the ways
in which he influenced (and influences) me the most. So “Happy birthday Glynn!”

2. The spacetime canvas

This section is necessarily brief; for a detailed treatment of the background mathematics I recommend the excellent book
by Hawking and Ellis [3] and the equally excellent but terse monograph by Penrose [4].

The fundamental unit of physics is the event. This is taken as a primitive undefined concept but one can think of it as an
idealization of a process as the duration and spatial extent of the process shrinks to zero. It is the spatio-temporal analogue
of an idealized point. The modern presentation of classical general relativity posits the existence of a smooth 4-manifold of
events on which is defined a local “metric” which specifies infinitesimal distances; this is called the spacetime metric and
the entire structure: manifold together with this metric, is called spacetime.

The metric alluded to above is not like a metric that one studies in topology or analysis: it is rather the analogue of a
Riemannian metric in geometry. Rather than attributing distances to pairs of points it gives lengths of infinitesimal curves;
one can integrate this metric along a curve to obtain a length for a curve.
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The reason that the word “metric” appears in quotation marks is that unlike the metrics that mathematicians and
computer scientists are used to, the spacetime metric takes on positive and negative values and is zero even for many
curves connecting pairs of distinct points. The reason for this is the existence of independent events: events that cannot
influence each other. Such pairs of events are said to be spacelike and the distances are said to be positive. Other pairs
of events are possibly causally related and the distances between them are negative: such events are said to be timelike
related. In order to give a coherent presentation of the structure of spacetime it is best to imagine it as a blank canvas on
which more and more sophisticated mathematical structures are defined in successive layers.

As a prelude to painting the spacetime canvas I will quickly review the pre-Einstein–Minkowski picture of spacetime.
Here there is a 4-dimensional manifold M of events. A manifold is a topological space so one understands what is meant
by open and closed sets. Given two events A and B is it possible for A to influence B? For a fixed A there is a set of events
that A can potentially influence: call it F (A), the future of A. There is a set of events that can influence A: call this P (A)

the past of A. These two sets are open and share a common boundary: call this N(A). The set N(A) is “now” as far as A
is concerned: it is the set of events that are simultaneous with A. The fact that the past and the future share a common
boundary means that the points that are pairs of points to the future and past of A that are arbitrarily close to each other
and arbitrarily far from A. All this testifies to the lack of any limit on the speed with which causal influences can propagate.

This structure can be neatly described by a real-valued function t : M → R called time. For all points in N(A) t takes
on the same value and for all points to the past of A, t is strictly less than t(A) while for all points in F (A), t is strictly
greater than t(A). The manifold has been decomposed into a product of a 3-manifold called S (space) and R (time): thus
M = S ×R. The geometry of spacetime can thus be reduced to the geometry of S which is spatial and one tends to ignore
time when talking about geometry. The metric on space is a positive-definite (i.e. Riemannian) metric.

The Einstein–Minkowski picture of spacetime is very different because of the experimental fact that the speed of light is
constant in all reference frames and the concomitant belief that this represents an upper bound on the speed of propagation
of signals. I now turn to the task of painting the spacetime canvas.

At the most primitive level, spacetime is just a set. At the next level it is a topological space: one has a notion of “nearly”
without any metrical connotations and one understands continuity. It is at this level that one encodes the 4-dimensionality
and the fact that locally every point looks like R

4. Again the 4 is an experimental fact; perhaps more refined experiments
will reveal in the future that it is really 11 dimensional or not even locally homeomorphic to any open subset of any R

n .
The next structure that one imposes is differential structure. This allows one to do differential calculus and define smooth

curves and tangent vectors to curves. Every point (event) p now has attached to it a 4-dimensional real vector space T p call
the tangent space at p. The whole assembly of all these vector spaces held together by being attached to the points of the
manifold is called the tangent bundle.

The next structure is the crucial one for causality. First a preliminary definition.

Definition 2.1. A subset C of a real vector space V is called a cone if

1. v ∈ C and −v ∈ C implies v = 0,
2. ∀r ∈R

+, v ∈ C; r · v ∈ C ,
3. ∀u, v ∈ C; u + v ∈ C .

A vector u ∈ C that can be written as v + w where both v and w are in C and v and w are not scalar multiples of each
other is said to be in the interior of the cone. A vector not in the interior of the cone is said to be on the boundary.

At every point p, there is a pair of subsets C+
p and C−

p of the tangent space called the future and past light cones. Each
of these sets are cones as defined just above. In pictures, one draws the cones as if they were on spacetime itself but they
really live in the tangent spaces. That is why it is necessary to define the differential structure first. A vector in the interior
of the future (past) light cone at p is said to be a future-pointing (past-pointing) timelike vector. A vector on the boundary
of C+ (C−) is said to be a future-pointing (past-pointing) null vector.

In order for the subsequent discussion to get off the ground one makes a basic assumption about the light cone structure.
It is assumed that it is possible to define a notion of future-pointing and past-pointing cones that vary continuously and are
defined globally. Such a spacetime is said to be time-orientable. One can construct counter-examples to time orientability by
using Möbius-strip like constructions; we will assume time orientability as a basic axiom of spacetimes henceforth.

A (smooth/continuous) curve is just a (smooth/continuous) map γ from R to M or [0,1] to M if one is considering a
curve with end points.

Definition 2.2. A curve is said to be timelike if its tangent vector is everywhere timelike. A curve is said to be causal if its
tangent vector is everywhere timelike or null.

The discussion is best couched in terms of piecewise smooth curves.
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