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We give an algorithm which in O (n log2 n) time counts all distinct squares in a labeled
tree. There are two main obstacles to overcome. The first one is that the number of distinct
squares in a tree is Ω(n4/3) (see Crochemore et al., 2012 [7]), which differs substantially
from the case of classical strings for which there are only linearly many distinct squares.
We overcome this obstacle by using a compact representation of all squares (based on
maximal cyclic shifts) which requires only O (n log n) space. The second obstacle is lack of
adequate algorithmic tools for labeled trees, consequently we design several novel tools,
this is the most complex part of the paper. In particular we extend to trees Imre Simon’s
compact representations of the failure table in pattern matching machines.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Repetitions play an important role in combinatorics on words with particular applications in pattern matching, text
compression, computational biology etc. For a survey on known results related to repetitions in words and their applications
see [2]. The basic type of a repetition are squares: strings of the form w w . Here we consider square substrings corresponding
to simple paths in labeled unrooted trees. Squares in trees and graphs have already been considered e.g. in [3,4]. There have
also been results on squares in partial words [5] and squares in the context of games [6].

Recently it has been shown that a tree with n nodes can contain Θ(n4/3) distinct squares, see [7], while the number of
distinct squares in a string of length n does not exceed 2n − Θ(log n), as shown in [8–10]. This paper can be viewed as an
algorithmic continuation of [7].

Enumerating squares in ordinary strings is already a difficult problem, despite the linear upper bound on their number.
Complex O (n) time solutions to this problem using suffix trees [11] and runs [12] are known. Two notions that we introduce
in this paper (semiruns and packages of cyclically equivalent squares) are in a sense an extension of the techniques used
in [12].

✩ A preliminary version of this paper appeared at ISAAC 2012 [1].
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1 Supported by Polish budget funds for science in 2013–2017 as a research project under the ‘Diamond Grant’ program (Ministry of Science and Higher

Education, Republic of Poland, grant number DI2012 01794).
2 This work was done while at University of Warsaw.
3 The author receives financial support of Foundation For Polish Science (START programme number 94.2013).

http://dx.doi.org/10.1016/j.tcs.2014.04.015
0304-3975/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2014.04.015
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:kociumaka@mimuw.edu.pl
mailto:pachocki@cs.cmu.edu
mailto:jrad@mimuw.edu.pl
mailto:rytter@mimuw.edu.pl
mailto:walen@mimuw.edu.pl
http://dx.doi.org/10.1016/j.tcs.2014.04.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2014.04.015&domain=pdf


T. Kociumaka et al. / Theoretical Computer Science 544 (2014) 60–73 61

Fig. 1. This tree contains the following squares: aa, aaaa, abab, baba, bb. We have here |sq(T )| = 5. Note that the squares abab and baba correspond to the
same path, one is read from left to right and the other is read from right to left.

Assume we have a tree T with n nodes whose edges are labeled with symbols from an integer alphabet Σ . We assume
that Σ is polynomially bounded in terms of n, i.e. Σ ⊆ {0, . . . ,nC } for some positive integer constant C . If u and v are two
nodes of T , then let val(u, v) denote the sequence of labels of edges on the path from u to v . We call val(u, v) a substring
of T . (Note that a substring is a string, not a path.) Denote by sq(T ) the set of different square substrings in T . The main
problem we consider is as follows:

Input: A labeled tree T .

Output: |sq(T )|, the number of distinct square substrings in T .

Example: For the tree in Fig. 1 we have |sq(T )| = 5.

Our result: We compute |sq(T )| in O (n log2 n) time.

In the same time complexity we provide a compact representation of the set of all distinct squares in T . The represen-
tation consists of O (n log n) packages, each package stores a pair of nodes x, y that represents the maximum cyclic rotation
u = val(x, y) of a square half and a cyclic interval I such that for all i ∈ I the cyclic rotation of u by i letters is a square half
(see Fig. 4 for an example).

The structure of the algorithm:

1. We reduce the problem to finding a compact representation of all squares anchored at a given node r of the tree.
Afterwards we consider trees rooted at specific node r.

2. For a given root r we compute a set of paths, called semiruns, which contain all squares anchored at r.
3. We reorganize the data related to semiruns to get an unambiguous representation of squares in terms of cyclic rotations.

This unambiguity allows efficient counting of squares.

The hardest and the most interesting part of the paper is efficient computation of several basic tables. We structure the
paper in such a way that this part is moved after the presentation of the main algorithm (which is described in Section 4).
Before that we present combinatorial tools related to strings and labeled trees which are the base of the algorithm design.

In the last section we present a linear time algorithm for counting squares in a special family of trees called combs. The
trees from this family turn out to maximize the asymptotic number of square substrings [7].

2. Combinatorial tools for squares in trees

Centroid decomposition The centroid decomposition enables to consider paths going through the root in rooted trees
instead of arbitrary paths in an unrooted tree. Let T be an unrooted tree of n nodes. Let T1, T2, . . . , Tk be the connected
components obtained after removing a node r from T . The node r is called a centroid of T if |Ti | ≤ n/2 for all Ti . The
centroid decomposition of T , CDecomp(T ), is defined recursively:

CDecomp(T ) = {
(T , r)

} ∪
k⋃

i=1

CDecomp(Ti).

Note that for every path p in T there exists an element (T ′, r′) ∈ CDecomp(T ) such that p is a path in T ′ that passes
through r′ . This can be proved by a simple induction on |T |: either p passes through r in T , or we use the inductive
hypothesis for the subtree Ti that contains p.

Every tree has a centroid, see [13], and a centroid of a tree can be computed in O (n) time. The recursive definition of
CDecomp(T ) implies a bound on its total size.

Fact 1. For a tree T with n nodes, the total size of all subtrees in CDecomp(T ) is O (n log n). The decomposition CDecomp(T ) can be
computed in O (n log n) time.
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