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Three important results about the expressivity of a modal logic L are the Characterization
Theorem (that identifies a modal logic L as a fragment of a better known logic), the
Definability Theorem (that provides conditions under which a class of L-models can be
defined by a formula or a set of formulas of L), and the Separation Theorem (that provides
conditions under which two disjoint classes of L-models can be separated by a class
definable in L).
We provide general conditions under which these results can be established for a given
choice of model class and modal language whose expressivity is below first order logic.
Besides some basic constraints that most modal logics easily satisfy, the fundamental
condition that we require is that the class of ω-saturated models in question has the
Hennessy–Milner property with respect to the notion of observational equivalence under
consideration. Given that the Characterization, Definability and Separation theorems are
among the cornerstones in the model theory of L, this property can be seen as a test that
identifies the adequate notion of observational equivalence for a particular modal logic.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Syntactically, modal languages [7] are propositional languages extended with modal operators. Indeed, the basic modal
language is defined as the extension of the propositional language with the unary operator �. Although these languages
have a very simple syntax, they are extremely useful to describe and reason about relational structures. A relational structure
is a nonempty set together with a family of n-ary relations. Given the generality of this definition it is not surprising that
modal logics are used in a wide range of disciplines: mathematics, philosophy, computer science, computational linguistics,
etc. For example, in theoretical computer science, labeled transition systems (which are nothing but relational structures)
are used to model the execution of a program.

An important observation that might have gone unnoticed in the above paragraphs is that we talk about modal logics, in
plural. There is, nowadays, a wide variety of modal languages and an extensive menu of modal operators to choose from:
Since and Until [19], universal modality [15], difference modality [11], fix-point operators [21], are some of the possibilities
to name only a few. This multiplicity is both a boon and a bane. On the one hand, the variety comes in handy when we need
to choose the proper logic to model a particular problem. But it also means that many results have to be established time
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and again for each new logic that arrives in town. It is here when a solid model theory is useful. With the proper theoretical
tools, some results might be established just by verifying certain properties of the class of models defining the logic. In
particular, many model theoretical results for a logic L rely on the availability of an adequate notion of “indiscernibility” or
observational equivalence, i.e., a notion that specifies when two models are indistinguishable by formulas of L.

We investigate Characterization, Definability, and Separation theorems for modal logics: three model-theoretical results
intimately related with the notion of observational equivalence. We pursue a general study of these properties without
referring to a particular modal logic. In general, the validity of these theorems is a good indicator that the underlying
notion of observational equivalence for a given logic is indeed the correct one.

First-order logic, modal logics and similarity These three notions will play a mayor role and it will be useful to discuss
them and their interaction right away. First-order logic (FO) will delineate our framework and we will assume its syntax,
semantics and basic properties well known.1 All the modal logics covered by our results are fragments of FO, and we will
make use of some of FO’s main model theoretic properties to prove our results. We will introduce the basic (uni)modal
logic BML in detail but, in the rest of this paper we will work with an arbitrary modal logic. We will only require it to be
adequately below first-order logic as per Definition 1. Finally, we will discuss different notions of observational equivalence.
They will depend on the particular logic under consideration but, once more, we will abstract away their common aspects
in the notion of an adequate similarity as per Definition 3.

Let us start by introducing syntax and semantics of BML. Let prop be a countable, infinite set of propositional symbols.
Formulas in BML are generated by the grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | �ϕ,

where p is a propositional symbol in prop. BML is interpreted over relational models M = (M, R, V ), where M is
a nonempty domain, R is a binary relation on M , and V is a valuation mapping propositional symbols to subsets over M .
The pair 〈M, w〉 for w an element in M is called a pointed model. We usually drop brackets and write M, w instead
of 〈M, w〉. Given a pointed model M, w we define when a BML-formula ϕ is true in M at w (notation M, w � ϕ) as
follows:

M, w � p iff w ∈ V (p)

M, w � ¬ϕ iff M, w � ϕ

M, w � ϕ ∧ ψ iff M, w � ϕ and M, w � ψ

M, w � �ϕ iff M, v � ϕ for some v ∈ M such that w R v.

The right notion of observational equivalence for BML is that of a bisimulation. A bisimulation between two models M =
(M, R, V ) and M′ = (M ′, R ′, V ′) is a nonempty relation Z ⊆ M × M ′ satisfying the following conditions:

(i) Atomic harmony: if w Z w ′ then w and w ′ satisfy the same propositional symbols, i.e., w ∈ V (p) iff w ′ ∈ V ′(p) for all
propositional symbols p;

(ii) Forth condition: if w Z w ′ and w R v then there is v ′ s.t. v Z v ′ and w ′R ′v ′;
(iii) Back condition: if w Z w ′ and w ′R ′v ′ then there is v s.t. v Z v ′ and w R v .

Two pointed models M, w and M′, w ′ are called bisimilar if there is a bisimulation Z between M and M ′ such that
w Z w ′ . A well known result in basic modal logic states that if M, w and M′, w ′ are bisimilar then they are modally
equivalent, i.e., for any BML-formula ϕ we have M, w � ϕ iff M′, w ′ � ϕ . The reverse implication is not true in general.
A model M is called modally-saturated if for every state w ∈ M and every set Σ of formulas, if every finite subset of Σ

is satisfiable in some successor of w , then Σ itself is satisfiable in some successors of w . An important result states that if
two modally saturated models are modally equivalent then they are bisimilar [7].

We now switch to first-order logic. Notice, first, that a relational model M= (M, R, V ) is essentially a first-order model
over the language with a binary relation symbol and unary predicate symbols for the propositional symbols. Second, bisim-
ulations are the modal analogue of the first-order notion of partial isomorphism. That is, partial isomorphisms are the right
notion of observational equivalence for FO. Given a model M and w1, . . . , wn elements in M , we write (M, w1, . . . , wn)

for the extension of M with w1, . . . , wn as new constant symbols (interpreted in the obvious way). A partial isomorphism
between two first-order models M and M′ is a binary relation Z on pairs of finite sequences 〈w1, . . . , wn〉, 〈w ′

1, . . . , w ′
n〉

of elements of M and M ′ of the same length such that ∅Z∅ and

(i) Atomic harmony: if 〈w1, . . . , wn〉Z〈w ′
1, . . . , w ′

n〉 then (M, w1, . . . , wn) and (M′, w ′
1, . . . , w ′

n) satisfy the same atomic
sentences;

1 We will use standard notation for first-order models and formulas and, in particular, we will use |	 for the satisfiability relation between a first-order
model M, an assignment g and a first-order formula ϕ .
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