
Science of Computer Programming 79 (2014) 70–85

Contents lists available at ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

FeatureIDE: An extensible framework for feature-oriented
software development
Thomas Thüm a,∗, Christian Kästner b, Fabian Benduhn a, Jens Meinicke a, Gunter Saake a,
Thomas Leich c

a University of Magdeburg, Magdeburg, Germany
b University of Marburg, Germany
c METOP GmbH, Magdeburg, Germany

a r t i c l e i n f o

Article history:
Received 24 January 2011
Received in revised form 31 May 2012
Accepted 4 June 2012
Available online 21 June 2012

Keywords:
Feature-oriented software development
Software product lines
Feature modeling
Feature-oriented programming
Aspect-oriented programming
Delta-oriented programming
Preprocessors
Tool support

a b s t r a c t

FeatureIDE is an open-source framework for feature-oriented software development
(FOSD) based on Eclipse. FOSD is a paradigm for the construction, customization, and
synthesis of software systems. Code artifacts are mapped to features, and a customized
software system can be generated given a selection of features. The set of software
systems that can be generated is called a software product line (SPL). FeatureIDE supports
several FOSD implementation techniques such as feature-oriented programming, aspect-
oriented programming, delta-oriented programming, and preprocessors. All phases of
FOSD are supported in FeatureIDE, namely domain analysis, requirements analysis, domain
implementation, and software generation.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Feature-oriented software development (FOSD) is a paradigm for the construction, customization, and synthesis of
software systems [4]. A feature is a prominent or distinctive user-visible aspect, quality, or characteristic of a software
system [22]. The basic idea of FOSD is to decompose software systems into features in order to provide configuration options
and to facilitate the generation of software systems based on a selection of features. A software product line (SPL) denotes
the set of software systems that can be generated from a given set of features [17].

FeatureIDE is an Eclipse-based framework to support FOSD. The main focus of FeatureIDE is to cover the whole
development process and to incorporate tools for the implementation of SPLs into an integrated development environment
(IDE). FeatureIDE’s architecture eases the development of tool support for existing and new languages for FOSD and thus
reduces the effort needed to try out new languages and concepts.

Currently, the development of FeatureIDE focuses on teaching and research. FeatureIDE is used in software engineering
lectures in Austin, Magdeburg, Marburg, Namur, Passau, Santa Cruz, and Torino. Before we implemented FeatureIDE, our
students had to learn how to use several command-line tools, each with different parameters and output, whereas they
are often used to working with modern IDEs such as Eclipse. With FeatureIDE, we provide a coherent user interface and
automate tasks which previously required complex tool chains. We envision that FeatureIDE can also be used productively
in future and serve as an open-source alternative to commercial product-line tools [36,12].

∗ Corresponding author.
E-mail address: tthuem@ovgu.de (T. Thüm).

0167-6423/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2012.06.002

http://dx.doi.org/10.1016/j.scico.2012.06.002
http://www.elsevier.com/locate/scico
http://www.elsevier.com/locate/scico
mailto:tthuem@ovgu.de
http://dx.doi.org/10.1016/j.scico.2012.06.002


T. Thüm et al. / Science of Computer Programming 79 (2014) 70–85 71

Fig. 1. A simple feature model modeling an SPL of HelloWorld programs. The features Hello andWorld are mandatory, and simply print the feature’s name.
The featuresWonderful and Beautiful are alternatives, but they are not required. This SPL contains three valid Hello World programs.

FeatureIDE supports several implementation techniques for FOSD, and others can be integrated with low costs. The user
interface for different implementation techniques is almost identical. Hence, FeatureIDE is especially qualified for teaching
and for comparing SPL implementation techniques with respect to their applicability for the development of SPLs.

FeatureIDE underwent several changes since the initial development in 2004. In 2005, we presented a prototypical
version of FeatureIDE [28]. At that time, FeatureIDE was just a front end for the programming language Jak of the AHEAD
tool suite [9]. The development of this tool support was costly for a research language, but we earned positive feedback
from other universities using FeatureIDE for teaching. Hence, we made this effort reusable for the FOSD implementation
tools FeatureHouse [5] and FeatureC++ [6], and presented FeatureIDE as a tool framework for FOSD [25].

We present recent developments of FeatureIDE such as improved usability, new functionalities, and the newly integrated
FOSD languages AspectJ [26], DeltaJ [37], Antenna [34], and Munge [31]. Furthermore, we discuss the effort of extending
FeatureIDE, and describe how FeatureIDE is implemented and tested, while reporting pitfalls and opportunities interesting
for other academic tool builders. Developers of Eclipse plug-ins get insights, aswe share our lessons learnedwith FeatureIDE.

2. Feature-oriented software development

FOSD can be used to plan and implement SPLs (referred to as domain engineering) as well as to select features
and generate customized programs (application engineering). FeatureIDE supports the FOSD process, and we distinguish
between the following four phases.

1. Domain analysis. The aim is to capture the variabilities and commonalities of a software-system domain, which results
in a feature model.

2. Domain implementation. Implementing all software systems of the domain at the same time, while mapping code assets
to features.

3. Requirements analysis. Requirements are mapped to the features of the domain, and features needed for a customized
software system are selected, resulting in a configuration.

4. Software generation (or composition). A software system is automatically built, given a configuration and the domain
implementation.

Domain implementation and software generation highly depend on each other. An SPL implementation technique
describes how features are mapped to implementation artifacts and how to generate customized software systems. In
this section, we introduce feature models, configurations, and SPL implementation techniques currently supported by
FeatureIDE.

2.1. Feature modeling and configuration

In SPLs, not all combinations of features are considered valid and lead to useful software systems. A feature model defines
the valid combinations of features in a domain [22]. Feature models have a hierarchical structure, whereas each feature can
have subfeatures [17]. The graphical representation of a feature model is a feature diagram, and an example is shown in
Fig. 1. Connections between a feature and its group of subfeatures are distinguished as and-, or-, and alternative-groups [8].
The children of and-groups can be either mandatory or optional. A feature is abstract if it is not mapped to implementation
artifacts, and concrete otherwise [40]. A feature model may also have cross-tree constraints to define dependencies which
cannot be expressed otherwise. A cross-tree constraint is a propositional formula over the set of features that is usually shown
below the feature diagram.

Feature models are a common notion for variability, and their semantics is as follows: the selection of a feature implies
the selection of its parent feature. Furthermore, if a feature is selected, all mandatory subfeatures of an and-group must be
selected. In or-groups, at least one subfeature must be selected, and in alternative-groups, exactly one subfeature has to be
selected. Finally, all cross-tree constraints must be fulfilled.

A configuration is a subset of all features defined in the feature model. A configuration is valid if the combination of
features is allowed by the feature model (i.e., if it fulfills the semantics of groups and all cross-tree constraints). Otherwise,
the configuration is called invalid.



Download	English	Version:

https://daneshyari.com/en/article/434260

Download	Persian	Version:

https://daneshyari.com/article/434260

Daneshyari.com

https://daneshyari.com/en/article/434260
https://daneshyari.com/article/434260
https://daneshyari.com/

