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Labelle and Lamathe introduced in 2009 a generalization of the standard combinatorial
differential species operator D , by giving a combinatorial interpretation to Ω(X, D)F (X),
where Ω(X, T ) and F (X) are two-sort and one-sort species respectively. One can show that
such operators can be decomposed as sums of products of simpler operators called atomic
combinatorial differential operators. In their paper, Labelle and Lamathe presented a list of
the first atomic differential operators. In this paper, we describe an algorithm that allows
to generate (and enumerate) all of them, subject to available computer resources. We also
give a detailed analysis of how to compute the molecular components of Ω(X, D)F (X).

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Since its introduction by Joyal in 1981 [9], the theory of species of structures has a noticeable influence in a variety
of fields including combinatorics, algebraic data types [16], and also for the generation of combinatorial structures, either
random [5,3] or exhaustive [12]. Many aspects have been developed and the theory remains an active research domain for
which the reader can find a comprehensive account in the monography of Bergeron et al. [2].

One of its fundamental concepts is the notion of derivative of a species. Indeed, for any species F , the combinatorial
interpretation of D F is well known: A D F -structure on a set U is simply an F -structure on the set U ∪ {∗} where ∗ is an
element not in U . In other words, a D F -structure is an F -structure with a placeholder for one element as Fig. 1a illustrates.
Moreover, we have a good grip on the notion of Dn F , obtained from n successive applications of D on a species F . We often
describe the differential operator Dn as an Ln(D)-structure, that is an n-list of operators D (see Fig. 1b).

Joyal further developed this idea of graphical arrangements of the differential operator D by introducing in [10] a more
general differential operator. It gives, for any species G , a combinatorial interpretation to a combinatorial operator denoted
by G(D). For example, Fig. 2a illustrates the differential operator C(D) where C is the species of oriented cycles. But what
combinatorial interpretation can one give to a circular arrangement of D ’s and X ’s as in Fig. 2b?

Labelle and Lamathe answered this question in [11] (see also [13]) by introducing a generalization of the differential
operator G(D). For any two-sort species Ω(X, T ), they defined a differential operator Ω(X, D), called generalized combi-
natorial differential operator. In the same manner as for ordinary species, such operators can be decomposed as a sum of
products of operators Xm Dk/K called atomic combinatorial differential operators, where K is some suitable subgroup of
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Fig. 1. (a) A DL6-structure on the set U = {1,2,3,4,5} where L6 denotes the species of six elements lists. The placeholder element is represented as a
white square (�); (b) The differential operator Dn as an Ln(D)-structure.

Fig. 2. (a) The general differential operator C(D) as a C(D)-structure; (b) A circular arrangement of operators D and singletons species X .

Fig. 3. The definition of the shift performed on h and k to obtain h ∗ k in Definition 2.1.

Sm,k . They provide a partial list of all such operators for m + k � 7 (see also [4] for molecular species). The main purpose of
this paper is to develop an algorithm which extends this list to include all atomic operators for m + k � n, n ∈N.

2. Preliminaries

A species of structures F is a functor F : B −→ B from the category B of finite sets with bijections to itself. A number
of combinatorial operations are defined on species, namely addition, multiplication, cartesian product, composition and
derivation. Those concepts can be extended to sets with k different sorts of elements. To denote one-sort and two-sort
species, we use the notation F (X) and Ω(X, T ) for k = 1 and k = 2.

Molecular and atomic species play a very important role in the study of species. A species M is said to be molecular if
and only if M = F + G ⇒ F = 0 or G = 0. In the same manner, a molecular species A is said to be atomic if and only if
A = F G ⇒ F = 1 or G = 1.

One can show that any molecular species M = M(X) is isomorphic to a species Xn/H , where H is a subgroup of Sn . This
species is defined by setting for every finite set U

Xn

H
[U ] = {

λH | λ : [n] ∼−→ U is a bijection
}
, (1)

where λH = {λ◦h | h ∈ H}. One can then show that two molecular species Xn/H and Xm/K are isomorphic if and only if n =
m and H is conjugate to K in Sn . Similarly, any molecular two-sort species M = M(X, T ) is isomorphic to a species Xm T k/H
where H is a subgroup of Sm,k . Here, Sm,k denotes the Young subgroup of Sm+k permuting independently {1,2, . . . ,m} and
{m + 1,m + 2, . . . ,m + k}. Note that Sm,k 	 Sm × Sk (see [15,2] for more details).

For our purpose, we need a few important and useful results about products of two-sort molecular species.

Definition 2.1. Let H and K be subgroups of Sa1,b1 and Sa2,b2 respectively. The subgroup H ∗ K of Sa1+a2,b1+b2 is defined by

H ∗ K = {ω = h ∗ k | h ∈ H and k ∈ K },
where h ∗ k is the permutation obtained by the following shift operation on the four blocks of h and k:

Block of size a1 −→ ω1 . . .ωa1 = h1 . . .ha1

Block of size a2 −→ ωa1+1 . . .ωa1+a2 = a1 + k1 . . .a1 + ka2

Block of size b1 −→ ωa1+a2+1 . . .ωa1+a2+b1 = a2 + h1+a1 . . .a2 + hb1+a1

Block of size b2 −→ ωa1+a2+b1+1 . . .ωa1+a2+b1+b2 = a1 + b1 + k1+a2 . . .a1 + b1 + kb2+a2

Fig. 3 illustrates this shift (∗) operation.
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