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a b s t r a c t

Component-based software construction relies on suitable models underlying compo-
nents, and in particular the coordinators which orchestrate component behaviour. Veri-
fying correctness and safety of such systems amounts to model checking the underlying
system model. The model checking techniques not only need to be correct (since system
sizes increase), but also scalable and efficient.

In this paper, we present a SAT-based approach for bounded model checking of
Timed Constraint Automata, which permits true concurrency in the timed orchestration
of components. We present an embedding of bounded model checking into propositional
logic with linear arithmetic. We define a product that is linear in the size of the system,
and in this way overcome the state explosion problem to deal with larger systems. To
further improve model checking performance, we show how to embed our approach into
an extension of counterexample guided abstraction refinement with Craig interpolants.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Component-based software engineering supports constructing large systems by composing individual components. The
correctness and safety of these concurrent systems depend on inter-component communication actions which happen at
the right time. Components are often only available as black boxes; therefore, there is a need for component connectors
that provide exogenous coordination, i.e., coordination fromwithout [2]. As such, these component connectors require true
concurrency in time, which combines synchrony and asynchrony, to express complex coordination patters.

The computational complexity introduced by the infinite state space of these real-time systems leads to severe limitations
in scalability even within very well-established model checkers like Uppaal (http://www.uppaal.com). Aside from the
omnipresent state explosion problem [14] already present in finite statemodel checking, currentmodel checking techniques
for real-time systems are still limited in the number of concurrent quantitative temporal observations (measured by clocks).
A particularly dramatic cause of the state explosion problem is the exponential blow-up obtained by forming the cross
product for parallel composition. To avoid this, we define a linear-size parallel composition for the logical representation
of TCA. By providing an initial valuation for step 0, typically only a reduced part of the full parallel composition has to be
expanded from our representation during satisfiability checking (SAT solving).

Very sophisticated and well-optimised techniques (e.g., [28]) guide high-end SAT solvers to explore only a comparably
narrow fragment around the part of the state space relevant for the particular safety property. We build upon this
development by choosing a linear arithmetic/propositional encoding, a philosophy that has successfully proven its great
potential in finite state systems [13]. With this basis, we exploit the particularities of transition systems induced by TCA
using abstraction refinement to deal with the challenges of infinite states.
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Fig. 1. TCA, conceptual view.

1.1. Timed constraint automata

Timed Constraint Automata [4] (TCA) are a combination of constraint automata [5] (CA) and timed automata (TA) with
location invariants [1]. Originally defined as a semantical model for the channel based coordination language Reo [3] (and
so far having been used for this single purpose only), they offer a powerful coordination mechanism for channel based
coordination languages in general. In this work, we exploit the full modelling spectrum of the formalism, by directly using
TCA to implement coordinating connectors in networkswhere timed components communicate by exchanging data through
multiple channels. The behaviour of the network is given by synchronisation between channel ends (ports).

While the functionality of channels is often limited to synchrony and (FIFO) buffering, TCA allow connectorswith arbitrary
behaviour. These connectors provide exogenous coordination, by imposing a certain communication pattern – for example
reordering or delays – on associated components. TCA are compositional, which allows to easily build complex connectors
out of simpler ones.

Most action-based (coordination) models, like e.g. finite state machines, I/O automata or TA, permit only a single action
per transition. As a consequence, synchrony, and concurrent execution of actions in the parallel composition, is reduced to
arbitrary interleavings plus nondeterminism. Especially for timed systems (like TA) – aside frombeing unintuitive – this does
not correctly capture the nature of distributed systems, since it imposes a sequential order on actions which conceptually
happen at the same time. Moreover, from a technical point of view, the presence of all possible interleavings amplifies the
state explosion problem. In contrast, TCA allow sets of actions on each transition, which permits true concurrency, as this
directly models (truly atomic) synchronous communication through different ports.

In this way, TCA provide a coordination model to implement component connectors, which combines the notions of
real-time and true concurrency, and allows for complex coordination patterns including both synchrony and asynchrony.

Example 1.1 (Introduction). Fig. 1 shows our conceptual notion of networks of TCA. The network presented here consists of
three components C1, C2 and C3, and a central connector CO, which is connected to the components through ports A, B and
C , respectively. Throughout the paper, we will use the connector CO as a running (toy) example. The basic idea of CO is to
repeatedly receive data from components C1 (through port A) and C2 (through B), and to send this data to C3 (through C).
Depending on constraints on the received data, either component C1 or C2 is connected to – i.e., data is transmitted between
– component C3 (dynamic reconfiguration). Note that this is just a toy example, used to illustrate the concepts introduced
in this paper. For a more meaningful example, consider Section 6.

1.2. Abstraction refinement

Abstraction refinement [14,19] is a promising direction of research to overcome the challenges of the state explosion
problemand infinite statemodel checking,while preserving correctness of verification results. Abstraction techniques based
on over-approximation (also called conservative approximation) enrich the system behaviour, by removing constraints that
are considered irrelevant for verifying a particular property. These techniques may yield false negatives: a safety property
is rejected in the abstract system, though it holds in the original system. If, however, the abstract system is safe (no error
state is reachable) then, by over-approximation, so is the original.

Based on the representation of TCA in propositional logic with linear arithmetic, iterative abstraction refinement consists
of the following steps: applying the abstraction function to the representation, we automatically produce a simpler
abstract version of it. After unfolding the resulting transition formula k times, a satisfiability check solves the bounded
reachability question in the abstract system. Depending on the outcome, the system has either been proven safe (error
state is unreachable) within bound k, or needs to be analysed with respect to an abstract counterexample (concretised),
again using SAT solving. If the abstract counterexample has a counterpart in the non-abstracted system, then the system
is unsafe. Otherwise, the counterexample is spurious and results from an inappropriate choice of abstraction. Analysing the
counterexample (with Craig interpolants derived by the SAT solver, e.g. FOCI (based on [25]) or MathSAT [24]) then helps to
refine the abstraction and start over until the system is proven safe (within bound k) or unsafe.

1.3. Contributions

Themain contributions of this paper can be summarised as follows:we extend the (expressiveness of the) basic definition
of TCA [4], by generalising from finite data domains to countably infinite data domains.

We then develop a formal framework for direct investigation and verification of TCA: we define a constraint-based
representation of TCA in propositional logic with linear arithmetic. These constraints capture the current state of connectors
in the network, and possible synchronisations of connectors with each other and the environment. In this way, we can
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