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In a recent paper [M. Anthony, J. Ratsaby, Maximal width learning of binary functions,
Theoretical Computer Science 411 (2010) 138–147] the notion of sample width for binary
classifiers mapping from the real line was introduced, and it was shown that the
performance of such classifiers could be quantified in terms of this quantity. This paper
considers how to generalize the notion of sample width so that we can apply it where
the classifiers map from some finite metric space. By relating the learning problem to one
involving the domination numbers of certain graphs, we obtain generalization error bounds
that depend on the sample width and on certain measures of ‘density’ of the underlying
metric space. We also discuss how to employ a greedy set-covering heuristic to bound
generalization error.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Overview

In [3], the notion of sample width for binary classifiers mapping from the real line was introduced, and in [4,5], related
ideas were developed to explore the performance of hybrid classifiers based on unions of boxes and a nearest-neighbor
paradigm. In this paper, we consider how a similar approach might be taken to the situation in which classifiers map
from some finite metric space (which would not generally have the linear structure of the real line). Precise details are
given below, but the idea is to define sample width to be at least γ if the classifier achieves the correct classifications
on the sample and if, in addition, for each sample point, the minimum distance to a point of the domain having opposite
classification is at least γ . We then relate the learning problem in this context to that of learning with a large margin. In
order to obtain bounds on classifier accuracy, we consider the domination numbers of graphs associated with the underlying
metric space and, using some previous combinatorial results bounding domination number in terms of graph parameters,
including number of edges and minimum degree, we obtain generalization error bounds that depend on measures of density
of the underlying metric space. We also discuss how to employ the well-known greedy set-covering heuristic to bound
generalization error.

1.2. The underlying metric space and the width of a classifier

Let X = [N] := {1,2, . . . , N} be a finite set on which is defined a metric d :X × X → R. Let D = [d(i, j)] be the corre-
sponding ‘distance matrix’. Then D is symmetric with (i, j)th element d(i, j) � 0, and with d(i, j) = 0 if and only if i = j.
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For a subset S of X , define the distance from x ∈X to S as follows:

dist(x, S) := min
y∈S

d(x, y).

We define the diameter of X as follows:

diamD(X ) := max
x,y∈X d(x, y) = ‖D‖∞

where ‖D‖∞ is the max-norm for matrix D .
By a binary function on X , we mean a mapping h : X → Y where Y = {−1,+1}. We will denote by H the class of all

binary functions h on X .
The paper [3] introduced the notion of the width of a binary function at a point in the domain, in the case where the

domain was the real line R. Consider a set of points {x1, x2, . . . , xm} from R, which, together with their true classifications
yi ∈ {−1,1}, yield a training sample

ξ = (
(x j, y j)

)m
j=1 = (

(x1, y1), (x2, y2), . . . , (xm, ym)
)
.

We say that h :R → {−1,1} achieves sample margin at least γ on ξ if h(xi) = yi for each i (so that h correctly classifies
the sample) and, furthermore, h is constant on each of the intervals (xi − γ , xi + γ ). It is then possible to quantify (in
a probabilistic model of learning) the accuracy of learning in terms of the sample width. (More precisely, generalization
error bounds are derived that involve the sample margin, within a version of the PAC model of learning. More detail about
probabilistic modelling of learning is given in Section 2.)

In this paper we use an analogous notion of width to analyze classifiers defined on a finite metric space. We now define
the notion of width that naturally suits this space.

Let us denote by Sh− and Sh+ the sets corresponding to the function h :X → {−1,1} which are defined as follows:

Sh− := {
x ∈ X : h(x) = −1

}
, Sh+ := {

x ∈ X : h(x) = +1
}
. (1)

We will often omit the superscript h. In [4–6] we analyzed learning that was based on a class of real-valued functions
defined as the difference between the distances of a point x from two non-overlapping subsets S+ , S− of X : of particular
interest was the case in which S+ and S− are each unions of boxes (labeled 1 and −1, respectively), where the union
S+ ∪ S− need not cover the domain. Here, we define the width in a slightly different way by starting with a given binary
function h (rather than with two arbitrary non-overlapping sets). Given such a binary function h we define the width wh(x)
of h at a point x ∈ X to be the following distance (where h(x) is the sign opposite to that of h(x), meaning − if h(x) = 1
and + if h(x) = −1):

wh(x) := dist(x, Sh(x)).

In other words, it is the distance from x to the set of points that are labeled the opposite of h(x). The term ‘width’ is
appropriate since the functional value is just the geometric distance between x and the set Sh(x) .

Let us define the signed width function, or margin function, fh , as follows:

fh(x) := h(x)wh(x).

This is commonly also referred to as the functional margin of h at x. Note that the absolute value of fh(x) is, intuitively,
a measure of how ‘definitive’ or ‘confident’ is the classification of x by h: the higher the value of fh(x) the greater the
confidence in the classification of x.

We define the class F of margin functions as

F := {
fh(x): h ∈ H

}
. (2)

Note that fh is a mapping from X to the interval [−diamD(X ),diamD(X )]. Henceforth, we will use γ > 0 to denote a
learning margin parameter whose value is in the range (0,diamD(X )].

2. Measuring the accuracy of learning

2.1. Probabilistic modelling of learning

We work in the framework of the popular ‘PAC’ model of computational learning theory (see [23,10]). This model as-
sumes that the labeled examples (xi, yi) in the training sample ξ have been generated randomly according to some fixed
(but unknown) probability distribution P on Z = X × Y . (This includes, as a special case, the situation in which each xi
is drawn according to a fixed distribution on X and is then labeled deterministically by yi = t(xi) where t is some fixed
function.) Thus, a sample ξ of length m can be regarded as being drawn randomly according to the product probability
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