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Many optimization problems can be phrased in terms of constraint satisfaction. In
particular MAX-2-SAT and MAX-2-CSP are known to generalize many hard combinatorial
problems on graphs. Algorithms solving the problem exactly have been designed but the
running time is improved over trivial brute-force solutions only for very sparse instances.
Despite many efforts, the only known algorithm [28] solving MAX-2-CSP over n variables
in less than 0*(2") steps uses exponential space.

Several authors have designed algorithms with running time 0*@2"@) where f:R* —
(0,1) is a slowly growing function and d is the average variable degree of the input

formula. The current best known algorithm for MAX-2-CSP [25] runs in time O*(Z"(I’ﬁ))
and polynomial space. In this paper we continue this line of research and design new
algorithms for the MAX-2-SAT and MAX-2-CSP problems.

First, we present a general technique for obtaining new bounds on the running time of
a simple algorithm for MAX-2-CSP analyzed with respect to the number of vertices from

algorithms that are analyzed with respect to the number of constraints. The best known
3

bound for the problem is improved to 0*@"1=T1)) for d > 3. We further improve the
3.677

bound for MAX-2-SAT, in particular for d > 6 we achieve 0",
As a second result we present an algorithm with asymptotically better running time for
the case when the input instance is not very sparse. Building on recent work of Feige and
Kogan we derive an upper bound on the size of a vertex separator for graphs in terms of
the average degree of the graph. We then design a simple algorithm solving MAX-2-CSP in
time 0*(2%"), cg=1— z‘lf}“d for some @ <1 and d = o(n).

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Exponential time algorithms

A paradigm in computational complexity was to divide problems into efficiently solvable and hard problems, in more
precise terms NP-hard or #P-hard. Since hard problems are unlikely to be solvable exactly in polynomial time, researchers
started to design approximation algorithms such that one can efficiently find a solution which is reasonably good. However,
for many hard problems, approximation algorithms are either inadequate or do not yield satisfactory results. For example,
unless P = NP no polynomial time algorithm can approximate MAX-2-SAT with a factor better than 0.9546 [13].
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Hard problems were deemed intractable and except for a few results [14,16,21,26], not much work was invested in
the design of exponential time algorithms improving upon the naive solution. However, the increase in computational
power and available memory led to a shift in these attitudes. The last two decades have witnessed a growing interest
in design and analysis of deterministic and randomized exponential time algorithms. New algorithms with considerably
improved running times have increased the size of efficiently computable instances of hard problems. Notable examples
include solving k-cOLORABILITY for graphs on n vertices in time and space 0*(2")? independent of k [3] and k-SATISFIABILITY

on n variables in time O*((@)") and polynomial space [23,24].

1.2. Problem statement

The maximum satisfiability problem (MAX-SAT) is: given a Boolean formula in conjunctive normal form (CNF), i.e. a con-
junction of literal disjunctions, find the maximum number of simultaneously satisfiable clauses of this formula. MAX-2-SAT
is a restricted version of MAX-SAT, where each clause contains at most two literals.

MAX-2-SAT is a special case of the maximum 2-constraint satisfaction problem (MAX-2-CSP). In the MAX-2-CSP problem
one is given a graph G = (V,E) along with sets of “weight” functions S, : {0,1} — Z for each vertex v € V and Se :
{0, 1}2 — Z for each edge e € E. (We will assume that the weight functions can be evaluated and represented in polynomial
time and space.) The goal is to find an assignment ¢ : V — {0, 1} maximizing the sum

Do Se(d(v), 0(v2) + D Sv(d(v)). (1)

e=(vq,vp)eE veV

It is easy to see that by associating variables with vertices and clauses with edges, MAX-2-SAT corresponds to the case when
all functions from S, are disjunctions and each vertex v € V is assigned a weight of 0 by S,. In the following an instance
of MAX-2-CSP will be described by the graph G and the set of weight functions S =S, U Se, and an instance of MAX-2-SAT
will be given only by the Boolean formula F since the weight function does not need to be explicitly defined.

MAX-SAT and MAX-2-SAT are among the most famous NP-hard optimization problems generalizing many graph prob-
lems. As already mentioned, the problem is hard to approximate with a factor better than 0.9546. Moreover, there is no
known algorithm for either problem with polynomial space and running time less than 0*(2"), i.e. a running time of the
form 0*((2 — &)™) for a constant & > 0. The strong exponential time hypothesis [4,17] implies that MAX-SAT cannot be
solved in time less than O0*(2").

1.3. The main definitions

Let G = (V,E) be an undirected graph.®> In the following we give definitions only for MAX-2-CSP in terms of graph
terminology. By associating vertices with Boolean variables and edges with 2-clauses, i.e. disjunctions of two variables or
their negations, the definitions trivially extend to Boolean formulas in CNF form.

By n(G), m(G) we denote, respectively, the number of vertices and the number of edges in G. The size of G is defined as
|G| =m(G) +n(G). By the degree deg(x) of a vertex x we mean the number of edges incident to x. We say that a vertex y is
the neighbor of a vertex x if there is an edge (x, y) € G. By A(G) we denote the maximum vertex degree in G. d(G) =2m/n
is the average vertex degree. We omit G if it is clear from the context.

Note that in the case of MAX-2-CSP one can assume without loss of generality that the corresponding graph does not
contain multiple edges (as any two parallel edges can be replaced by their “sum”). At the same time one cannot exclude
multiple edges from a MAX-2-SAT graph by the same argument (e.g., the graph of a formula (x v y)(—xV ¥)(¥ V z) has two
edges between x and y).

By (n, A)-MAX-2-CSP we denote MAX-2-CSP problems restricted to instances in which each vertex has degree at most A.
By Opt(G, S) we denote the maximal value of (1) for (G, S) over all possible assignments ¢ : V — {0, 1}. Similarly we define
(n, A)-MAX-2-SAT for a Boolean formula F, and define Opt(F) to be the maximal number of simultaneously satisfiable
clauses of the formula F.

Let (G, S) be an instance of MAX-2-CSP, and v be a vertex in G. By (G, S)[v], or simply G[v] when clear from the
context, we denote the instance resulting from replacing all occurrences of v by 1 in (G, S). Similarly, for G[—v] we replace
v by 0. The definition naturally transfers to MAX-2-SAT, clauses containing a given literal | or —I are either satisfied or
shortened, i.e., 2-clauses become 1-clauses and 1-clauses are removed. Recursively solving a MAX-2-CSP problem instance
by considering the cases G[v] and G[—V] for a vertex v, is referred to as splitting or branching on v.

A vertex cover of a graph G = (V,E) is a subset of vertices C C V such that for each (u,v) € E, u € C or v € C holds.
The complement set V\C is an independent set in G. Two sets of vertices U C V, W C V are called pairwise independent
if UNW =@ and there exist no edges (u,w) € E with u e U, w e W. We will call a set S C V of vertices balanced

2 The O* notation ignores polynomial factors.
3 Note that we allow loops and multiple edges.
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