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Neuroimaging data are high dimensional and thus cumbersome to analyze. Manifold learning is a tech-
nique to find a low dimensional representation for high dimensional data. With manifold learning, data
analysis becomes more tractable in the low dimensional space. We propose a novel shape quantification
method based on a manifold learning method, ISOMAP, for brain MRI. Existing work applied another
manifold learning method, multidimensional scaling (MDS), to quantify shape information for distin-

Keyv@rds: . guishing Alzheimer’s disease (AD) from normal. We enhance the existing methodology by (1) applying
Manifold embedding N L. . . e . ) ;
ISOMAP it to distinguish mild cognitive impairment (MCI) from normal, (2) adopting a more advanced manifold

learning technique, ISOMAP, and (3) showing the effectiveness of the induced low dimensional embed-
ding space to predict key clinical variables such as mini mental state exam scores and clinical diagnosis
using the standard multiple linear regression. Our methodology was tested using 25 normal, 25 AD, and
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Morphometry 25 MCI patients.
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Introduction

Many neurodegenerative diseases cause unique morphological
changes in brain anatomy. Only certain structures of the brain are
selectively affected by the diseases, while the rest of the brain
remains the same. Alzheimer’s disease (AD) is known to cause
atrophy in the hippocampus region. Computational anatomy (CA)
is a research field which applies a computer algorithm to quan-
tify such changes in shape information [8]. The task of measuring
shape is not simple and has been a matter of significant controversy
[2,4]. There are two main approaches for measuring shape. The first
approach, deformation based morphometry (DBM), assumes that
all shape information is encoded in the deformation fields, which
relates one brain scan with another scan [3]. The second approach,
voxel based morphometry (VBM), assumes that all shape informa-
tion is encoded in some scalar function of the registered scans [1].
Two scans are segmented and then linearly registered so that both
scans are in the same spatial coordinates in the VBM approach.
Shape information is assessed by voxel-wise difference in the labels
after registration. DBM uses deformation fields obtained from reg-
istrations of a population and identifies differences in the relative
positions of structures within the region of interest (ROI). One
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major weakness of DBM is that it requires a very accurate regis-
tration algorithm for computation of the displacement field. We
adopt the DBM approach and assume all the necessary shape infor-
mation is given by the displacement fields. This study focuses on
AD and mild cognitive impairment (MCI). Many patients with MCI
often convert to AD later in the disease progression. MCI has been
extensively studied as detection of MCI is highly related to early
diagnosis of AD. We apply a computer algorithm to measure shape
differences so that AD or MCI patients may be distinguished from
normal patients. The shape information is computed from the dis-
placement field and the displacement field is burdened with high
dimensionality. The dimension of a displacement field is as high
as the number of voxels of the given scan, which may number in
the millions. Many displacement fields must be considered when
studying a population. Hence, the dimension of the overall data
is quite large. One way to ease the burden of high dimension-
ality is to apply manifold learning techniques. Manifold learning
is a technique used for finding a low dimensional representa-
tion for high dimensional data [10]. Researchers applied manifold
learning methods to neuroimaging data in order to effectively rep-
resent shape information in a low dimensional embedding space
[7].

Park et al. [12] applied multidimensional scaling (MDS) com-
bined with bending energy of the displacement field to discriminate
shape information between AD from normal controls [12]. Their
approach reported effective separation of AD from normal controls
and showed robustness to errors in displacement fields improv-
ing the major weakness with DBM based shape quantification. We
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extended Park et al. [12] to include MCI patients in this study.
Here we adopted a more advanced manifold learning technique
called ISOMAP instead of MDS. Shape information lies with non-
Euclidean Riemannian space and the induced distance is known
to be geodesic. ISOMAP better represents geodesic distances and
hence is better suited for studying shape information. In the pre-
vious study, the induced low dimensional embedding space was
used as a feature space for a kNN classifier to distinguish between
AD and normal. We used the low dimensional embedding space
as a feature space to perform classical statistical tests for clinical
variables, including score of mini mental state exam (MMSE) and
clinical diagnosis. Using multiple linear regression, we performed
statistical testing in order to determine how well the low dimen-
sional embedding space was able to predict MMSE score and clinical
diagnosis. Support vector machine (SVM) classifier combined with
advanced feature selection has been successfully applied to classify
normal and AD for PET, resulting up to 90% classification accuracy
[11]. The SVM based method is one of the state of the art methods
for classifying AD and normal. We compared the performance of the
method in this study with that of SVM based method in the results
section. In summary, this study builds on the work of Park et al. [12]
and we extended the methodology by (1) testing its applicability
to MCI patients, (2) adopting a more advanced manifold learning
technique, and (3) testing the effectiveness of the low dimensional
embedding space as a platform to carry out statistical tests for key
clinical variables.

Materials and methods

Our shape quantification methodology is very similar to the pre-
vious work [12]. Here we briefly describe the overall framework
emphasizing the differences.

Registration framework

Registration is a task of finding the geometric mapping between
two images, so that one image can be mapped onto the other. This
study used mutual information (MI) as the similarity measure and
thin-plate splines (TPS) as the geometric interpolant [9]. There are
many definitions of MI and we adopt the metric MI in the equation
below.

MI(X, Y) = H(X|Y) + H(Y|X) 1)

where X is the intensity distribution of scan X, Y is the intensity
distribution of scan Y, H(X|Y) is the conditional entropy of X given
Y, and H(Y|X) is the conditional entropy of Y given X. This particu-
lar variant of MI satisfies the metric property including symmetry
and triangular inequality. Many manifold learning techniques work
best with metric distance measures.

Distance measure

Registration between two scans yields a geometric transform
optimized for maximization of a certain cost function. The displace-
ment field is a collection of evaluations of the geometric transform
at all voxel locations. The entire deformation field, whose order is
equal to the number of voxels, is compressed to a single scalar value.
The scalar value is the geometric distance, hereafter called dis-
tance, which measures the roughness of the geometric transform
that associates the coordinate spaces of two scans. If the geomet-
ric transform is complex between two images, then the distance
measure will be high. If the geometric transform is simple, then
the distance measure will be small. We adopted the integral of
the squared value of the second-order derivative of the geomet-
ric transform as the distance measure. We chose the second-order

derivative in order to ensure invariance to affine transforms. The
formulation for the distance measure is given below.
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where fy displacement in x and f, displacement in y.

Formulation in (2) is for 2D and can be easily extended for 3D.
This distance is called the bending energy. The proposed distance
measure is based on the displacement field. Others adopted a dis-
tance measure based on grayscale information of the registered
scans [14]. If two scans can be registered with a high MI value, it
is likely that two scans are similar hence the distance between the
two should be small. Thus, the inverse of Ml (i.e., 1/MI) may be used
as a distance measure. We compared our distance measure based
on the displacement field (i.e., bending energy) with the distance
measure based on grayscale values (i.e., metric MI) in the results
section.

ISOMAP

ISOMAP is a manifold learning technique based on pair-wise
distances derived from high dimensional data [13]. Compared to
traditional manifold learning methods such as MDS, it approxi-
mates the geodesic distances using weighted neighborhood graphs.
Shape information occupies non-Euclidean Riemannian space and
the induced distance is geodesic, thus ISOMAP is well equipped to
deal with shape information. Given a set of distances in the distance
matrix D, ISOMAP outputs a set of coordinates in a user-specified
dimension. The dimension of ISOMAP output is determined based
on the eigenstructure of the distance matrix. The output coor-
dinates are in the standard Euclidean space of the user-chosen
dimension. ISOMAP considers only distance measures from nearby
objects and approximates large distances from distant objects by
composition of small scale distances. It basically trusts only small
distance values and approximates the large distance values using
composition of small distances. For scans that are relatively similar
and thus easy to register, the resulting bending energy is likely to
be small and ISOMAP places high confidence on such distances.
For scans that are vastly different and thus difficult to register,
the resulting bending energy is likely to be large and ISOMAP
does not trust such large bending energy values. Instead, ISOMAP
approximates the difficult registration between two vastly differ-
ent scans by composition of small scale and easy to do registration
tasks.

Framework for shape quantification

ISOMAP produces relative positional locations from a collection
of pair-wise distances, which in turn assigns a low dimensional
coordinate for each MRI scan. The key idea is to use a distance mea-
sure that quantifies distances between MRI scans. We adopted a
distance measure called bending energy, which is based on the dis-
placement field. Output of ISOMAP is often visualized on a scatter
plot, where each dot represents a scan. In the scatter plot, the rel-
ative positions of all scans are plotted in the Euclidean space of
a user-chosen dimension. We hypothesize that scans of the same
type will be placed adjacent and scans of different types will be
placed separately. Therefore, we expect a scatter plot in which two
distinct clusters can be observed. The low dimensional embed-
ding space (i.e., ISOMAP output coordinates) may be used as a
feature space for quantification of shape information. In this study,
the ISOMAP embedding space was used as the feature space for
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