Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Let G be a planar graph with $\Delta \ge 8$ and without adjacent cycles of size i and j, for some

 $3 \leq i \leq j \leq 5$. In this paper, it is proved that *G* is $(\Delta + 1)$ -total-colorable.

Total coloring of planar graphs with maximum degree 8

ABSTRACT

Huijuan Wang^a, Lidong Wu^b, Jianliang Wu^{a,*}

^a School of Mathematics, Shandong University, Jinan, 250100, China

^b Department of Computer Science, University of Texas at Dallas, Richardson, TX 75080, USA

ARTICLE INFO

Article history: Received 17 October 2013 Accepted 10 December 2013 Communicated by D.-Z. Du

Keywords: Planar graph Total coloring Cycle

1. Introduction

All graphs considered in this paper are simple, finite and undirected, and we follow [2] for terminologies and notations not defined here. Let *G* be a graph. We use *V*, *E*, Δ and δ to denote the vertex set, the edge set, the maximum degree and the minimum degree of *G*, respectively. A *k*-vertex, k^- -vertex or k^+ -vertex is a vertex of degree *k*, at most *k* or at least *k*, respectively. Similarly, we define a *k*-face, k^- -face and k^+ -face. We say that two cycles are *adjacent* if they share at least one edge. We use $(v_1, v_2, ..., v_n)$ to denote a cycle whose vertices are consecutively $v_1, v_2, ..., v_n$.

A *k*-total-coloring of a graph G = (V, E) is a coloring of $V \cup E$ using *k* colors such that no two adjacent or incident elements receive the same color. A graph *G* is *k*-total-colorable if it admits a *k*-total-coloring. The total chromatic number $\chi''(G)$ of *G* is the smallest integer *k* such that *G* is *k*-total-colorable. Clearly, $\chi''(G) \ge \Delta + 1$. Behzad, and Vizing independently, posed the famous conjecture, known as the Total Coloring Conjecture (TCC).

Conjecture 1. For any graph G, $\chi''(G) \leq \Delta + 2$.

Conjecture 1 was confirmed for graphs with $\Delta \le 5$ [9]. In recent years, the study of total colorings of planar graphs has attracted considerable attention. For planar graphs, the only open case of Conjecture 1 is that of $\Delta = 6$ [9,13]. For graphs embedded in a surface Σ of Euler characteristic $\chi(\Sigma) \ge 0$, the only open case of Conjecture 1 is also that of $\Delta = 6$ [16,20]. Furthermore, the total chromatic number of planar graphs with higher maximum degree can be determined. More precisely, it is known that $\chi''(G) = \Delta + 1$ if *G* is a planar graph with $\Delta \ge 9$ [10]. Some related results can be found in [3,4,6,7,11,12, 17,19]. For a planar graph *G* with $\Delta \ge 8$, it is known that $\chi''(G) = \Delta + 1$ if *G* does not contain 5-cycles or 6-cycles [8], or intersecting triangles [14,18], or adjacent triangles [5], or adjacent 4-cycles [15]. In this paper, we generalize some of the former results and get the following theorem.

© 2013 Elsevier B.V. All rights reserved.

^{*} Corresponding author. E-mail address: jlwu@sdu.edu.cn (J.L. Wu).

^{0304-3975/\$ –} see front matter @ 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.tcs.2013.12.006

Fig. 1. Reducible configurations of Lemma 2, where d(v) = 7 in (1).

Theorem 1. Suppose that *G* is a planar graph with $\Delta \ge 8$ and without adjacent cycles of size *i* and *j*, for some $3 \le i \le j \le 5$. Then $\chi''(G) = \Delta + 1$.

2. Reducible configurations

According to [10], planar graphs with $\Delta \ge 9$ are $(\Delta + 1)$ -total-colorable. Therefore, to prove Theorem 1, it suffices to prove the case of $\Delta = 8$. Let G = (V, E, F) be a minimal counterexample to Theorem 1, in the sense that the quantity |V| + |E| is minimum. By [13], every planar graph with $\Delta \le 7$ has a 9-total-coloring, so every proper subgraph of *G* has a 9-total-coloring φ using the color set $C = \{1, 2, \dots, 9\}$. For a vertex v, let C(v) be the set of colors assigned to the edges incident with v, and let $C'(v) = C \setminus (C(v) \cup \{\varphi(v)\})$. This section is devoted to investigating some structural information, which shows that certain configurations are *reducible*, that is, they cannot occur in *G*.

Lemma 1. (See [1].)

- (1) G is 2-connected.
- (2) If uv is an edge of G with $d(u) \leq 4$, then $d(u) + d(v) \geq \Delta + 2 = 10$.
- (3) The subgraph G_{28} of G induced by all edges joining 2-vertices to 8-vertices is a forest.

In each component T of G_{28} , there is a matching M in T which pairs off all the 2-vertices with some of the 8-vertices: in the graph T, choose an 8-vertex u as the root of T, and math each 2-vertex v with the 8-vertex w adjacent to v which is farther than its another neighbor z from u (note that z is also an 8-vertex and the leaves of T are all 8-vertices). In this case, the vertex w is called the *child* of v, and the vertex z is called the *parent* of v. So every 2-vertex has exactly one parent and exactly one child, which are all 8-vertices. Moreover, if an 8-vertex is adjacent to at least two 2-vertices, then this 8-vertex is a child of at most one 2-vertex and the parent of the remaining 2-vertices adjacent to it.

Lemma 2. (See [5,10].) *G* has no configurations depicted in Fig. 1(1)–(9), where the vertices marked by • have no other neighbors in *G*, and d(v) = 7 in Fig. 1(1).

Lemma 3. Suppose that v is an 8-vertex, u is a neighbor of v with d(u) = 2, and v_1, v_2, \ldots, v_k are consecutive neighbors of v with $d(v_i) \ge 3$ for $1 \le i \le k$, where $k \in \{4, 5, \ldots, 7\}$. If v is incident with two 3-cycles (v_1, v, v_2) and (v_{k-1}, v, v_k) , and incident with 4-cycles (v, v_i, x_i, v_{i+1}) for $2 \le i \le k - 2$, then at least one vertex in $\{v_2, v_3, \ldots, v_{k-1}\}$ is a 4⁺-vertex.

Proof. Assume to the contrary that $d(v_i) = 3$ for i = 2, 3, ..., k - 1 (see Fig. 2(1)). Let w be the neighbor of u different from v in G. By the minimality of G, G' = G - uv has a 9-total-coloring φ . Erase the colors on $u, v_2, v_3, ..., v_{k-1}$ and without loss of generality, we assume that $\varphi(uw) = 1$. Then $1 \notin C(v) \cup \{\varphi(v)\}$, since otherwise, vu touches nine colors and can be colored properly. Without loss of generality, let $\varphi(vv_1) = 2$ and $\varphi(vv_k) = 3$. It is easy to see that $1 \in C(v_i)$ for i = 2, 3, ..., k - 1, since otherwise, recolor vv_i with 1, color vu with $\varphi(vv_i)$ and color $u, v_2, v_3, ..., v_{k-1}$ properly, also a contradiction. We also have $1 \in \{\varphi(v_1v_2) \cup \varphi(v_{k-1}v_k)\}$, since otherwise, there is a vertex x_t ($2 \le t \le k - 2$) on which color 1 appears twice.

First, suppose $\varphi(v_1v_2) = \varphi(v_{k-1}v_k) = 1$. Then we have $\varphi(v_2x_2) = 2$, since otherwise, exchange the colors on vv_1 and v_1v_2 , color vu with 2 and color $u, v_2, v_3, \ldots, v_{k-1}$ properly, which yields a proper coloring of *G*. Similarly, $\varphi(v_{k-1}x_{k-2}) = 3$. Suppose that $\varphi(v_3x_2) \neq 1$. Now, $\varphi(v_3x_3) = \varphi(v_4x_4) = \cdots = \varphi(v_{k-2}x_{k-2}) = 1$. Thus $\varphi(v_{k-2}x_{k-3}) = 3$, since otherwise, we may get a contradiction by exchanging the colors, respectively, on vv_k and $v_{k-1}v_k$, and on $v_{k-1}x_{k-2}$ and $v_{k-2}x_{k-2}$, coloring vu with 3 and coloring $u, v_2, v_3, \ldots, v_{k-1}$ properly. Similarly, $\varphi(v_{k-3}x_{k-4}) = \varphi(v_{k-4}x_{k-5}) = \cdots = \varphi(v_3x_2) = 3$. Then

Download English Version:

https://daneshyari.com/en/article/434473

Download Persian Version:

https://daneshyari.com/article/434473

Daneshyari.com