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Let G be a planar graph with Δ � 8 and without adjacent cycles of size i and j, for some
3 � i � j � 5. In this paper, it is proved that G is (Δ + 1)-total-colorable.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are simple, finite and undirected, and we follow [2] for terminologies and notations
not defined here. Let G be a graph. We use V , E , Δ and δ to denote the vertex set, the edge set, the maximum degree and
the minimum degree of G , respectively. A k-vertex, k−-vertex or k+-vertex is a vertex of degree k, at most k or at least k,
respectively. Similarly, we define a k-face, k−-face and k+-face. We say that two cycles are adjacent if they share at least one
edge. We use (v1, v2, . . . , vn) to denote a cycle whose vertices are consecutively v1, v2, . . . , vn .

A k-total-coloring of a graph G = (V , E) is a coloring of V ∪ E using k colors such that no two adjacent or incident ele-
ments receive the same color. A graph G is k-total-colorable if it admits a k-total-coloring. The total chromatic number χ ′′(G)

of G is the smallest integer k such that G is k-total-colorable. Clearly, χ ′′(G) � Δ + 1. Behzad, and Vizing independently,
posed the famous conjecture, known as the Total Coloring Conjecture (TCC).

Conjecture 1. For any graph G, χ ′′(G) � Δ + 2.

Conjecture 1 was confirmed for graphs with Δ � 5 [9]. In recent years, the study of total colorings of planar graphs has
attracted considerable attention. For planar graphs, the only open case of Conjecture 1 is that of Δ = 6 [9,13]. For graphs
embedded in a surface Σ of Euler characteristic χ(Σ) � 0, the only open case of Conjecture 1 is also that of Δ = 6 [16,20].
Furthermore, the total chromatic number of planar graphs with higher maximum degree can be determined. More precisely,
it is known that χ ′′(G) = Δ + 1 if G is a planar graph with Δ � 9 [10]. Some related results can be found in [3,4,6,7,11,12,
17,19]. For a planar graph G with Δ � 8, it is known that χ ′′(G) = Δ + 1 if G does not contain 5-cycles or 6-cycles [8], or
intersecting triangles [14,18], or adjacent triangles [5], or adjacent 4-cycles [15]. In this paper, we generalize some of the
former results and get the following theorem.
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Fig. 1. Reducible configurations of Lemma 2, where d(v) = 7 in (1).

Theorem 1. Suppose that G is a planar graph with Δ � 8 and without adjacent cycles of size i and j, for some 3 � i � j � 5. Then
χ ′′(G) = Δ + 1.

2. Reducible configurations

According to [10], planar graphs with Δ � 9 are (Δ + 1)-total-colorable. Therefore, to prove Theorem 1, it suffices to
prove the case of Δ = 8. Let G = (V , E, F ) be a minimal counterexample to Theorem 1, in the sense that the quantity
|V | + |E| is minimum. By [13], every planar graph with Δ � 7 has a 9-total-coloring, so every proper subgraph of G has a
9-total-coloring ϕ using the color set C = {1,2, . . . ,9}. For a vertex v , let C(v) be the set of colors assigned to the edges
incident with v , and let C ′(v) = C\(C(v) ∪ {ϕ(v)}). This section is devoted to investigating some structural information,
which shows that certain configurations are reducible, that is, they cannot occur in G .

Lemma 1. (See [1].)

(1) G is 2-connected.
(2) If uv is an edge of G with d(u) � 4, then d(u) + d(v) � Δ + 2 = 10.
(3) The subgraph G28 of G induced by all edges joining 2-vertices to 8-vertices is a forest.

In each component T of G28, there is a matching M in T which pairs off all the 2-vertices with some of the 8-vertices:
in the graph T , choose an 8-vertex u as the root of T , and math each 2-vertex v with the 8-vertex w adjacent to v which
is farther than its another neighbor z from u (note that z is also an 8-vertex and the leaves of T are all 8-vertices). In this
case, the vertex w is called the child of v , and the vertex z is called the parent of v . So every 2-vertex has exactly one
parent and exactly one child, which are all 8-vertices. Moreover, if an 8-vertex is adjacent to at least two 2-vertices, then
this 8-vertex is a child of at most one 2-vertex and the parent of the remaining 2-vertices adjacent to it.

Lemma 2. (See [5,10].) G has no configurations depicted in Fig. 1(1)–(9), where the vertices marked by • have no other neighbors in
G, and d(v) = 7 in Fig. 1(1).

Lemma 3. Suppose that v is an 8-vertex, u is a neighbor of v with d(u) = 2, and v1, v2, . . . , vk are consecutive neighbors of v with
d(vi) � 3 for 1 � i � k, where k ∈ {4,5, . . . ,7}. If v is incident with two 3-cycles (v1, v, v2) and (vk−1, v, vk), and incident with
4-cycles (v, vi, xi, vi+1) for 2 � i � k − 2, then at least one vertex in {v2, v3, . . . , vk−1} is a 4+-vertex.

Proof. Assume to the contrary that d(vi) = 3 for i = 2,3, . . . ,k − 1 (see Fig. 2(1)). Let w be the neighbor of u different
from v in G . By the minimality of G , G ′ = G − uv has a 9-total-coloring ϕ . Erase the colors on u, v2, v3, . . . , vk−1 and
without loss of generality, we assume that ϕ(uw) = 1. Then 1 /∈ C(v) ∪ {ϕ(v)}, since otherwise, vu touches nine colors
and can be colored properly. Without loss of generality, let ϕ(v v1) = 2 and ϕ(v vk) = 3. It is easy to see that 1 ∈ C(vi) for
i = 2,3, . . . ,k − 1, since otherwise, recolor v vi with 1, color vu with ϕ(v vi) and color u, v2, v3, . . . , vk−1 properly, also a
contradiction. We also have 1 ∈ {ϕ(v1 v2)∪ϕ(vk−1 vk)}, since otherwise, there is a vertex xt (2 � t � k − 2) on which color 1
appears twice.

First, suppose ϕ(v1 v2) = ϕ(vk−1 vk) = 1. Then we have ϕ(v2x2) = 2, since otherwise, exchange the colors on v v1 and
v1 v2, color vu with 2 and color u, v2, v3, . . . , vk−1 properly, which yields a proper coloring of G . Similarly, ϕ(vk−1xk−2) = 3.
Suppose that ϕ(v3x2) �= 1. Now, ϕ(v3x3) = ϕ(v4x4) = · · · = ϕ(vk−2xk−2) = 1. Thus ϕ(vk−2xk−3) = 3, since otherwise, we
may get a contradiction by exchanging the colors, respectively, on v vk and vk−1 vk , and on vk−1xk−2 and vk−2xk−2, col-
oring vu with 3 and coloring u, v2, v3, . . . , vk−1 properly. Similarly, ϕ(vk−3xk−4) = ϕ(vk−4xk−5) = · · · = ϕ(v3x2) = 3. Then
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