Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Theoretical Computer Science

www.elsevier.com/locate/tcs

Total coloring of planar graphs with maximum degree 8

Huijuan Wang a, Lidong Wu b, Jianliang Wu ^a*,*[∗]

^a *School of Mathematics, Shandong University, Jinan, 250100, China*

^b *Department of Computer Science, University of Texas at Dallas, Richardson, TX 75080, USA*

article info abstract

Article history: Received 17 October 2013 Accepted 10 December 2013 Communicated by D.-Z. Du

Keywords: Planar graph Total coloring Cycle

1. Introduction

All graphs considered in this paper are simple, finite and undirected, and we follow $\lfloor 2 \rfloor$ for terminologies and notations not defined here. Let *G* be a graph. We use *V* , *E*, *Δ* and *δ* to denote the vertex set, the edge set, the maximum degree and the minimum degree of *G*, respectively. A *k-vertex*, *k*−*-vertex* or *k*+*-vertex* is a vertex of degree *k*, at most *k* or at least *k*, respectively. Similarly, we define a *k-face*, *k*−*-face* and *k*+*-face*. We say that two cycles are *adjacent* if they share at least one edge. We use (v_1, v_2, \ldots, v_n) to denote a cycle whose vertices are consecutively v_1, v_2, \ldots, v_n .

A *k*-total-coloring of a graph $G = (V, E)$ is a coloring of $V \cup E$ using *k* colors such that no two adjacent or incident elements receive the same color. A graph *G* is *k-total-colorable* if it admits a *k*-total-coloring. The *total chromatic number χ(G)* of *G* is the smallest integer *k* such that *G* is *k*-total-colorable. Clearly, $\chi''(G) \ge \Delta + 1$. Behzad, and Vizing independently, posed the famous conjecture, known as the *Total Coloring Conjecture* (TCC).

Conjecture 1. For any graph G, $\chi''(G) \leq \Delta + 2$.

Conjecture 1 was confirmed for graphs with $\Delta \leq 5$ [\[9\].](#page--1-0) In recent years, the study of total colorings of planar graphs has attracted considerable attention. For planar graphs, the only open case of Conjecture 1 is that of $\Delta = 6$ [\[9,13\].](#page--1-0) For graphs embedded in a surface Σ of Euler characteristic $\chi(\Sigma) \geqslant 0$, the only open case of Conjecture 1 is also that of $\Delta = 6$ [\[16,20\].](#page--1-0) Furthermore, the total chromatic number of planar graphs with higher maximum degree can be determined. More precisely, it is known that $\chi''(G) = \Delta + 1$ if *G* is a planar graph with $\Delta \geq 9$ [\[10\].](#page--1-0) Some related results can be found in [\[3,4,6,7,11,12,](#page--1-0) [17,19\].](#page--1-0) For a planar graph *G* with $\Delta \ge 8$, it is known that $\chi''(G) = \Delta + 1$ if *G* does not contain 5-cycles or 6-cycles [\[8\],](#page--1-0) or intersecting triangles [\[14,18\],](#page--1-0) or adjacent triangles [\[5\],](#page--1-0) or adjacent 4-cycles [\[15\].](#page--1-0) In this paper, we generalize some of the former results and get the following theorem.

Let G be a planar graph with \varDelta ≥ 8 and without adjacent cycles of size *i* and *j*, for some $3 \leq i \leq j \leq 5$. In this paper, it is proved that *G* is $(Δ + 1)$ -total-colorable. © 2013 Elsevier B.V. All rights reserved.

CrossMark

Corresponding author. *E-mail address:* jlwu@sdu.edu.cn (J.L. Wu).

^{0304-3975/\$ –} see front matter © 2013 Elsevier B.V. All rights reserved. <http://dx.doi.org/10.1016/j.tcs.2013.12.006>

Fig. 1. Reducible configurations of Lemma 2, where $d(v) = 7$ in (1).

Theorem 1. Suppose that G is a planar graph with $\Delta \geqslant 8$ and without adjacent cycles of size i and j, for some 3 ≤ i ≤ j ≤ 5. Then *χ*^{$''$}(*G*) = *Δ* + 1*.*

2. Reducible configurations

According to [\[10\],](#page--1-0) planar graphs with $\varDelta\geqslant9$ are $(\varDelta+1)$ -total-colorable. Therefore, to prove Theorem 1, it suffices to prove the case of $\Delta = 8$. Let $G = (V, E, F)$ be a minimal counterexample to Theorem 1, in the sense that the quantity |*V* |+|*E*| is minimum. By [\[13\],](#page--1-0) every planar graph with *Δ* 7 has a 9-total-coloring, so every proper subgraph of *G* has a 9-total-coloring φ using the color set $C = \{1, 2, \ldots, 9\}$. For a vertex ψ , let $C(\psi)$ be the set of colors assigned to the edges incident with v , and let $C'(v) = C \setminus (C(v) \cup \{\varphi(v)\})$. This section is devoted to investigating some structural information, which shows that certain configurations are *reducible*, that is, they cannot occur in *G*.

Lemma 1. *(See [\[1\].](#page--1-0))*

- (1) *G is* 2*-connected.*
- (2) If uv is an edge of G with $d(u) \leqslant 4$, then $d(u) + d(v) \geqslant \Delta + 2 = 10$.
- (3) *The subgraph G*²⁸ *of G induced by all edges joining* 2*-vertices to* 8*-vertices is a forest.*

In each component *T* of *G*28, there is a matching *M* in *T* which pairs off all the 2-vertices with some of the 8-vertices: in the graph *T* , choose an 8-vertex *u* as the root of *T* , and math each 2-vertex *v* with the 8-vertex *w* adjacent to *v* which is farther than its another neighbor *z* from *u* (note that *z* is also an 8-vertex and the leaves of *T* are all 8-vertices). In this case, the vertex *w* is called the *child* of *v*, and the vertex *z* is called the *parent* of *v*. So every 2-vertex has exactly one parent and exactly one child, which are all 8-vertices. Moreover, if an 8-vertex is adjacent to at least two 2-vertices, then this 8-vertex is a child of at most one 2-vertex and the parent of the remaining 2-vertices adjacent to it.

Lemma 2. *(See [\[5,10\].](#page--1-0)) G has no configurations depicted in Fig*. 1(1)–(9)*, where the vertices marked by* • *have no other neighbors in G*, and $d(v) = 7$ *in Fig.* 1(1).

Lemma 3. Suppose that v is an 8-vertex, u is a neighbor of v with $d(u) = 2$, and v_1, v_2, \ldots, v_k are consecutive neighbors of v with $d(v_i) \geqslant 3$ for $1 \leqslant i \leqslant k$, where $k \in \{4, 5, \ldots, 7\}$. If v is incident with two 3-cycles (v_1, v, v_2) and (v_{k-1}, v, v_k) , and incident with 4-cycles (v, v_i, x_i, v_{i+1}) for $2 \le i \le k-2$, then at least one vertex in $\{v_2, v_3, \ldots, v_{k-1}\}$ is a 4⁺-vertex.

Proof. Assume to the contrary that $d(v_i) = 3$ for $i = 2, 3, ..., k - 1$ (see [Fig. 2\(](#page--1-0)1)). Let *w* be the neighbor of *u* different from *v* in *G*. By the minimality of *G*, $G' = G - uv$ has a 9-total-coloring φ . Erase the colors on $u, v_2, v_3, \ldots, v_{k-1}$ and without loss of generality, we assume that $\varphi(uw) = 1$. Then $1 \notin C(v) \cup {\varphi(v)}$, since otherwise, *vu* touches nine colors and can be colored properly. Without loss of generality, let $\varphi(vv_1) = 2$ and $\varphi(vv_k) = 3$. It is easy to see that $1 \in C(v_i)$ for $i = 2, 3, \ldots, k - 1$, since otherwise, recolor vv_i with 1, color vu with $\varphi(vv_i)$ and color u, $v_2, v_3, \ldots, v_{k-1}$ properly, also a contradiction. We also have $1 \in {\varphi(v_1 v_2) \cup \varphi(v_{k-1} v_k)}$, since otherwise, there is a vertex x_t ($2 \le t \le k-2$) on which color 1 appears twice.

First, suppose $\varphi(v_1v_2) = \varphi(v_{k-1}v_k) = 1$. Then we have $\varphi(v_2x_2) = 2$, since otherwise, exchange the colors on vv_1 and v_1v_2 , color vu with 2 and color u, v_2 , v_3 , ..., v_{k-1} properly, which yields a proper coloring of G. Similarly, $\varphi(v_{k-1}x_{k-2})=3$. Suppose that $\varphi(v_3x_2) \neq 1$. Now, $\varphi(v_3x_3) = \varphi(v_4x_4) = \cdots = \varphi(v_{k-2}x_{k-2}) = 1$. Thus $\varphi(v_{k-2}x_{k-3}) = 3$, since otherwise, we may get a contradiction by exchanging the colors, respectively, on *v vk* and *vk*−¹ *vk*, and on *vk*−1*xk*−² and *vk*−2*xk*−2, coloring vu with 3 and coloring u, v_2 , v_3 , ..., v_{k-1} properly. Similarly, $\varphi(v_{k-3}x_{k-4}) = \varphi(v_{k-4}x_{k-5}) = \cdots = \varphi(v_3x_2) = 3$. Then

Download English Version:

<https://daneshyari.com/en/article/434473>

Download Persian Version:

<https://daneshyari.com/article/434473>

[Daneshyari.com](https://daneshyari.com)