
Science of Computer Programming 72 (2008) 22–30

Contents lists available at ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

Flexible metaprogramming and AOP in Java

Éric Tanter a,∗, Rodolfo Toledo a, Guillaume Pothier a, Jacques Noyé b

a PLEIAD Lab, Computer Science Department (DCC), University of Chile–Santiago, Chile
b OBASCO Project-Team EMN/INRIA, LINA–Nantes, France

a r t i c l e i n f o

Article history:
Received 30 April 2006
Received in revised form 3 September 2007
Accepted 18 October 2007
Available online 25 April 2008

Keywords:
Metaprogramming
Reflection
Aspect-oriented programming
Reflex
Java

a b s t r a c t

Advanced programming techniques such as metaprogramming and computational
reflection, as well as the more recent paradigm of aspect-oriented programming
(AOP), serve important objectives of software engineering such as modularization and
adaptability. In this tool presentation paper, we briefly overview this area and present
Reflex, a portable tool for flexible metaprogramming and AOP in Java.

Reflex provides both structural and behavioral facilities adopting a uniform model
of partial reflection. This allows selective and fine-grained control of where and when
reflection occurs. The facilities of Reflex make it easy to experiment with (combinations
of) advanced uses of AOP and reflection without reinventing the wheel or being limited to
a specific AOP language.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Research in programming languages has been driven by the need to achieve well-modularized software respecting
the principle of Separation of Concerns [1,2]. Good modularization serves many software engineering properties such
as understandability, extensibility, reusability, etc. It also helps to make software more adaptable [3,4], since for a given
concern to be adaptable (possibly dynamically) it first has to be cleanly modularized. Work on computational reflection
[5,6], metaprogramming, and more recently, aspect-oriented programming (AOP) [7,8], has been a fruitful path to achieve
better modularization and adaptation in many systems, such as middleware [9], concurrent systems [10,11], distributed
programming [12–15], operating systems [16,17], user interfaces [18], context-aware applications [19,20], etc.

The Java programming language only offers a limited set of reflective abilities, which have been progressively extended
as the languagematured. Still, many fundamental reflective features are missing. This is whymany reflective and/or aspect-
oriented extensions of Java have been proposed; just to name a few: Javassist [21], for structural reflection at load time,
Kava [22], for runtime behavioral reflection, and on the AOP side, AspectJ [23], the most popular Java language extension for
AOP, and frameworks such as AspectWerkz [24], JAC [25], and JAsCo [26].

This paper gives an overview of Reflex, a portable Java framework for flexible metaprogramming and AOP. Reflex bridges
the gap betweenmetaprogramming and reflection on one side andAOPon the other side, and hence provides advanced users
with a versatile kernel for experimenting with AOP concepts and language features [27–30]. It has been applied in concrete
application domains such as concurrent systems [11], distributed systems [15,31], and context-aware applications [20]. It
is an open source project distributed under the MIT license, and the Reflex website1 gives access to many resources, such as
documentation and a tutorial, a subversion repository, mailing lists, and publications.

∗ Corresponding author.
E-mail addresses: etanter@dcc.uchile.cl (É. Tanter), rtoledo@dcc.uchile.cl (R. Toledo), gpothier@dcc.uchile.cl (G. Pothier), noye@emn.fr (J. Noyé).

1 http://pleiad.dcc.uchile.cl/reflex

0167-6423/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2007.10.005

http://www.elsevier.com/locate/scico
http://www.elsevier.com/locate/scico
mailto:etanter@dcc.uchile.cl
mailto:rtoledo@dcc.uchile.cl
mailto:gpothier@dcc.uchile.cl
mailto:noye@emn.fr
http://pleiad.dcc.uchile.cl/reflex
http://pleiad.dcc.uchile.cl/reflex
http://pleiad.dcc.uchile.cl/reflex
http://pleiad.dcc.uchile.cl/reflex
http://pleiad.dcc.uchile.cl/reflex
http://pleiad.dcc.uchile.cl/reflex
http://dx.doi.org/10.1016/j.scico.2007.10.005


É. Tanter et al. / Science of Computer Programming 72 (2008) 22–30 23

In the next section, we give a bit more background information on metaprogramming, reflection and AOP. We then
present the key features of Reflex in Section 3, by exposing its underlying model and concepts. API details are not addressed
here, but the reader is referred to the Reflex tutorial on the website. Section 4 addresses the use of Reflex in practice. We
finally briefly discuss related systems in Section 5. Section 6 concludes with on-going and future work.

2. Metaprogramming and AOP

After the seminal work of Brian C. Smith on computational reflection [5,32], and the marriage of reflection and
object-oriented programming by Pattie Maes [6], many attempts have been made to apply so-called metaobject protocols
(MOPs) [33] for achieving separation of concerns [34]. The basic idea is that the semantics of a base program is modularly
extended or modified by appropriatemetaobjects. A metaobject is given control over reifications of the structure or behavior
of the underlying program, i.e. objects describing otherwise implicit elements of a program. Hencemetaobjects can take care
of particular concerns of the application, such as authentication or invariant checking, while the base application is mostly
unaware of these concerns.

This led to the issue of metalevel engineering [35], that is, the organization of metalevel entities in ways that are
satisfactory with respect to the traditional engineering principles of composability, extensibility, and flexible granularity.2
These issues have given rise to many reflective architectures, exploring different approaches to metalevel engineering. A
particularly interesting one is the operational decomposition proposed by McAffer [35]. McAffer distinguishes between two
approaches to reflection, which consist of either starting from the base-level language structural elements (e.g. classes),
or from the basic operations defining the computational behavior of an object (message send and receive, field access,
object creation, etc.). He refers to these approaches as the top-down and the bottom-up approach, respectively. One could
alternatively refer to them as a structural and a behavioral approach. McAffer justifies the use of the second approach as it
is more flexible in terms of granularity and makes it possible to describe a wider range of behavior models.

At the same time, work on open implementations [18] was facing the same issues of metalevel locality of change and
engineering. Granularity of metalevel entities directly affects locality of change: altering the definition of ametaclass affects
all the instances of that class, while changing themetalevel entity representing one singlemethod invocation leaves the rest
of the program intact. Furthermore, Kiczales noticed that sometimes the metalevel concepts that are most natural to use
actually crosscut the concepts at the base level [36]. This led his group to focus on this crosscutting issue and to eventually
come up with the paradigm of Aspect-Oriented Programming [7] (AOP). AOP is now a very active research area [8].3

AOP puts forward a new kind of module called an aspect, which is the modular definition of a crosscutting concern. An
aspect can act on a program by synchronizing with it at join points, usually defined as program execution points where
an aspect applies, and performing its action, often called an advice, a term inherited from Lisp. Although the most famous
join point model is the dynamic join point model, whereby a join point is simply a program execution point, which greatly
resembles the operational decomposition of McAffer, a join point model can also refer to other program properties (e.g. data
flow graphs [7], traces [37], structural properties [38]). Individual join points are grouped together by means of pointcuts,
which can be seen as queries on the program structure and the program execution.

3. Reflex

Reflex is a portable library that extends Java with structural and behavioral reflective facilities. We first describe the
uniform model of partial reflection that lies at the heart of Reflex, before surveying the structural and behavioral facilities
of Reflex. We end this section with a brief discussion of Reflex as a versatile kernel for AOP.

3.1. Uniform model of partial reflection

Partial reflection consists in providing reflective features only where and when needed, in the most selective manner, in
order to reduce the overhead associated with full reflection [27]. The underlying model of partial reflection of Reflex is that
of explicit links binding a cut to an action. A cut specifies which program elements are of interest, the action specifies what
to do on these program elements. The link is an explicit entity binding both, characterized by several attributes. Links are
the basic unit of specification in Reflex, and can be defined either eagerly before an application starts, or dynamically while
the application is running.

The cut of a link is defined via selection predicates, as illustrated later in this section, and the action is implemented in
a metaobject. A metaobject can be any standard Java object, provided it implements the expected protocol. There are two
kinds of links: structural links and behavioral links. The former are used to perform structural reflection at load time, while
the latter are used to perform behavioral reflection at run time.

2 Granularity here refers to the scope of metalevel entities: a coarse-grained metalevel decomposition can for instance provide one metaobject
representing the expression interpreter, while a finer-grained decomposition can provide a metalevel entity per class (metaclasses), or per object, or
even finer, per execution step.

3 See the community site at http://aosd.net/.

http://aosd.net/
http://aosd.net/
http://aosd.net/


Download	English	Version:

https://daneshyari.com/en/article/434561

Download	Persian	Version:

https://daneshyari.com/article/434561

Daneshyari.com

https://daneshyari.com/en/article/434561
https://daneshyari.com/article/434561
https://daneshyari.com/

