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1. Introduction

The maximum independent set problem (MIS), to find a maximum set of vertices in a graph such that there is no edge
between any two vertices in the set, is one of the basic NP-hard optimization problems and has been extensively studied
in the literature, in particular in the line of research on worst-case analysis of algorithms for NP-hard optimization prob-
lems. In 1977, Tarjan and Trojanowski [ 15] designed the first nontrivial algorithm for this problem, which runs in 0*(2"/3)
time and polynomial space. Later, the running time was improved to 0*(1.2346") by Jian [9]. Robson [13] obtained an
0*(1.2278™)-time polynomial-space algorithm and an 0*(1.2109")-time exponential-space algorithm. In a technical re-
port [14], Robson also claimed better running times. Fomin et al. [6] got an 0*(1.2210")-time polynomial-space algorithm
by using the “Measure and Conquer” method. Recently Kneis et al. [10] and Bourgeois et al. [2] improved the running time
bound to 0*(1.2132") and 0*(1.2127") respectively. There is also a considerable amount of contributions to the maximum
independent set problem in sparse graphs, especially in degree-3 graphs [1,4,18,3]. Chen et al. [4] showed that MIS3 (the
maximum dependent set problem in degree-3 graphs) can be solved in 0*(1.1254") time. Xiao et al. [ 18] used the number
of degree-3 vertices as a measure to analyze algorithms and got an 0*(1.1034")-time algorithm for MIS3. Razgon [11] also
designed another 0*(1.1034")-time algorithm for this problem. Fiirer [8] designed an algorithm for MIS3 by measuring the
running time in terms of m — n, where m is the number of edges. Based upon a refined branching with respect to Fiirer’s
algorithm, Bourgeois et al. [3] got an 0*(1.0977")-time algorithm for MIS3. Razgon [12] and Xiao [17] further improved the
running time bound to 0*(1.0892") and 0*(1.0885™) respectively. Currently, the best result on this problem is Bourgeois
et al’s 0*(1.0854")-time algorithm designed by carefully checking the worst cases [2]. See Table 1 for a summary on the
currently published results on low-degree graphs as well as general graphs.
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Table 1
Exact algorithms for the maximum independent set problem.
Authors Running times References Notes
Tarjan & Trojanowski 0*(1.2600") for MIS 1977 [15] n: number of vertices
Jian 0*(1.2346™) for MIS 1986 [9]
Robson 0*(1.2109") for MIS 1986 [13] Exponential space
Beigel 0*(1.0823™) for MIS 1999 [1] m: number of edges
0*(1.1259") for MIS3
Chen et al. 0*(1.1254") for MIS3 2003 [4]
Xiao et al. 0*(1.1034") for MIS3 2005 [18] Published in Chinese
Fomin et al. 0*(1.2210") for MIS 2006 [6]
Fomin & Hoie 0*(1.1225™) for MIS3 2006 [7]
Fiirer 0*(1.1120") for MIS3 2006 [8]
Razgon 0*(1.1034") for MIS3 2006 [11]
Bourgeois et al. 0*(1.0977™) for MIS3 2008 [3]
Razgon 0*(1.0892") for MIS3 2009 [12]
Kneis et al. 0*(1.2132") for MIS 2009 [10]
Xiao 0*(1.0885™) for MIS3 2010[17]
Bourgeois et al. 0*(1.2127") for MIS 2012 [2]
0*(1.0854") for MIS3
Xiao & Nagamochi 0*(1.0836") for MIS3 This paper

One reason why MIS3 has been extensively studied is that MIS in low-degree graphs are usually the bottlenecks to get
improvement for the problem in general graphs. Most previous result for MIS in general graphs are obtained by carefully
analyzing the problems in low-degree graphs. Bourgeois et al. [2] presented a bottom-up method for MIS, which shows that
the improvements on MIS for low-degree graphs can be used to derive improved algorithms for MIS in general graphs. Then
they got the current best result for MIS in general graphs by designing an improved algorithm for MIS3 and so on.

Most fast algorithms for the maximum independent set problem are obtained via careful examinations of the structures
in the graph. In those algorithms, a long list of reduction and branching rules are used, which is derived from a somewhat
complicated case analysis. In this paper, we introduce some uniform reduction and branching rules for the maximum
independent set and vertex cover problems, which can be used to design simple algorithms. To catch more properties of the
graphs, we use the sum of max{0, §(v) — 2} over all vertices v as the measure of a graph to analyze the algorithm, where
8(v) is the degree of a vertex v. When the graph is a degree-3 graph, the measure is the number of degree-3 vertices in the
graph. To get improvement on MIS3, we use an idea of avoiding the worse cases. Finally, our algorithm runs in 0*(1.0836")
time, which improves previous algorithms for MIS3 and can derive improved algorithm for MIS in general graphs by using
the bottom-up method introduced in [2].

Based on our new result on MIS3, we recently designed an 0*(1.1446")-time algorithm to MIS4 (the maximum indepen-
dent set problem in degree-4 graphs) [20], which improves the results of 0*(1.1571") [2] and 0*(1.1526") [19].

2. Preliminaries

Let V denote the set of all vertices in an instance and let n = |V|. We may simply use v to denote the set {v} of a
single vertex v. For a set X of vertices, let N(X) denote the neighbors of X, i.e., the vertices y € V — X adjacent to a vertex
x € X, and denote N(X) U X by N[X]. For a vertex v € V, let N,(v) denote the set of vertices at distance exactly 2 from
v, and §(v) (= |N(v)|) denote the degree of v. Define p(v) = max{0, 6(v) — 2}. For a graph H = (Vy, Ey), we denote
p(H) = ZveVH p(v). We also denote p(X) = ),y p(v) for a set X of vertices in G.

We say that an edge e is incident on a vertex set X, if at least one endpoint of e is in X. Let G — X denote the graph
obtained from G by removing the vertices in X and the edges incident to X. Contracting X is to identify all vertices in X as a
single vertex s, where any resulting self-loops and multiple edges will be removed. Hence s is adjacent to a vertex v € V —X
in the resulting graph if and only if v is adjacent to a vertex in X. Let G/X denote the graph obtained from G by contracting
a subset X of vertices.

A subgraph of G is called a k-path (or path) if it consists of a sequence of k + 1 distinct vertices vy, v,, . .., Vg1 such that
v; and v;yq are adjacent for eachi = 1,2, ...,k A (k — 1)-path vy, vo, ..., vx (k > 3) together with an edge v,v; called a
k-cycle (or cycle). Apath vy, vy, . .., vry1 inagraph Gis called a pure path if each non-endpoint v; in the path has no neighbor
other than v;_; and v;;; in G. A pure path is called an o-path (resp., e-path) if the two endpoints are of degree > 3 and the
number of non-endpoints (of degree 2) in it is odd (resp., even), where we allow the two endpoints being a same vertex. A
component of a graph means a maximal connected subgraph of the graph.

Our algorithms are based on the branch-and-reduce paradigm. We will first apply some reduction rules to reduce the size
of instances of the problem. Then we apply some branching rules to branch on the instance by including some vertices in the
independent set or excluding some vertices from the independent set. In each branch, we will get a maximum independent
set problem in a graph instance with a smaller measure. Next, we introduce the reduction rules and branching rules that
will be used in our algorithm.
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