ELSEVIER

Contents lists available at ScienceDirect

Neuroscience Letters

journal homepage: www.elsevier.com/locate/neulet

Genetic and biochemical studies of SNPs of the mitochondrial $A\beta$ -degrading protease, hPreP

Catarina Moreira Pinho^{a,1}, Behnosh F. Björk^{b,1}, Nyosha Alikhani^a, Hans G. Bäckman^a, Therese Eneqvist^a, Laura Fratiglioni^{c,d}, Elzbieta Glaser^{a,*}, Caroline Graff^{b,d,**}

- ^a Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
- b Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Division of KI-Alzheimer Disease Research Center, Novum, SE-141 57 Huddinge, Sweden
- c Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Aging Research Center and Gerontology Research Center, SE-113 30 Stockholm, Sweden
- ^d Karolinska University Hospital, Department of Geriatrics, Huddinge, SE-141 86 Stockholm, Sweden

ARTICLE INFO

Article history: Received 7 October 2009 Received in revised form 25 November 2009 Accepted 25 November 2009

Keywords: Amyloid-β peptide Alzheimer disease SNP Mitochondria Proteolysis

ABSTRACT

Several studies suggest mitochondrial dysfunction as a possible mechanism underlying the development of Alzheimer disease (AD). There is data showing that amyloid- β (A β) peptide is present in AD brain mitochondria. The human presequence protease (hPreP) was recently shown to be the major mitochondrial A β -degrading enzyme. We investigated if there is an increased susceptibility to AD, which can be attributed to genetic variation in the hPreP gene *PITRM1* and if the proteolytic efficiency of recombinant hPreP variants is affected. When a total of 673 AD cases and 649 controls were genotyped for 18 single nucleotide polymorphisms (SNPs), no genetic association between any of the SNPs and the risk for AD was found. In contrast, functional analysis of four non-synonymous SNPs in hPreP revealed a decreased activity compared to wild type hPreP. Using A β , the presequence of ATP synthase F $_1\beta$ subunit and a fluorescent peptide as substrates, the lowest activity was observed for the hPreP(A525D) variant, corresponding to rs1224893, which displayed only 20–30% of wild type activity. Furthermore, the activity of all variants was restored by the addition of M g^{2+} , suggesting an important role for this metal during proteolysis. In conclusion, our data suggest that genetic variation in the hPreP gene *PITRM1* may potentially contribute to mitochondrial dysfunctions.

 $\hbox{@ 2009}$ Elsevier Ireland Ltd. All rights reserved.

Alzheimer disease (AD) is a progressive neurodegenerative disease associated with short-term memory impairment, spatial disorientation as well as general cognitive decline. The mechanism involved in the accumulation of amyloid β -peptide (A β) into extracellular plaques is one major research area. However, recent studies have directed attention toward the intracellular accumulation of A β and its presence in mitochondria, reviewed in [1]. These studies suggest that the presence of A β in mitochondria induces mitochondrial energy metabolism impairment [5] and an imbalance of mitochondrial fission and fusion [21] contributing to cellular dysfunction in the brain of AD patients. Interestingly, we were able to show that A β is transported into mitochondria via the Translocase of the Outer Membrane (TOM) machinery [10].

A few years ago we have identified the mitochondrial peptidasome, PreP, localized in the matrix, which degrades presequences and other short, unstructured peptides [12,15,19]. Importantly, we

found human PreP (hPreP) to be responsible for degrading $A\beta$ in mitochondria [8]. PreP belongs to the same pitrilysin oligopeptidase family as Insulin Degrading Enzyme (IDE). In contrast to IDE, hPreP cannot degrade insulin, but does degrade the insulin B-chain. A three-dimensional structural homology model of hPreP based on the 2.1 Å crystal structure of Arabidopsis thaliana PreP (AtPreP) [12] identified two cysteines in close proximity of each other that might form a disulphide bond under oxidizing conditions inhibiting the enzyme, thus making the enzyme sensitive to the oxidative state of its environment. Based on the growing experimental evidence on the presence of and the detrimental effects of $A\beta$ in mitochondria, we believe that hampered degradation of mitochondrial $A\beta$ by hPreP may be an important contributory factor in the etiology of AD.

However, the etiology of AD is complex and mutations in amyloid precursor protein (APP; MIM# 104760)[9], presenilin 1 (PSEN1; MIM# 104311) [18] and presenilin 2 (PSEN2; MIM# 633044) [17] can cause rare dominant early-onset forms of the disease. The vast majority of AD cases is not monogenic and has an age at onset >65 years of age. To date, the $\varepsilon 4$ allele of the apolipoprotein E gene ($APOE \ \varepsilon 4$; MIM# 107741.0016) is the only confirmed genetic risk factor for late onset AD (LOAD) [6]. In the search

^{*} Corresponding author. Tel.: +46 8 162457; fax: +46 8 153679.

^{**} Corresponding author. Tel.: +46 8 585 83619; fax: +46 8 585 83610.

E-mail addresses: e.glaser@dbb.su.se (E. Glaser), caroline.graff@ki.se (C. Graff).

¹ These authors contributed equally to the work.

for additional genetic risk factors, several groups, including our own, have performed association studies on the IDE gene and the risk for AD (http://www.alzgene.org). The results from these studies are inconclusive, two studies using Swedish AD cases and controls have reported positive association to variations in IDE [4,16]. Interestingly, the overall 3D structures of IDE and PreP are highly similar [11,14]. The homology of the active sites of hPreP and IDE and the results from our functional studies of hPreP [8] urged us to investigate the possible role for the gene encoding hPreP, PITRM1, located in chromosomal region 10p15.2, containing 27 exons, and transcribed from the antisense strand as a genetic risk factor for AD. We present a gene-wide association study by genotyping 18 SNPs (including nine tagged SNPs) in PITRM1 using a total of 673 AD cases and 649 cognitive controls. Moreover, we investigated if there is a functional difference between hPreP alleles. Based on the structural location of the reported non-synonymous SNPs and thereby their potential effect on hPreP proteolysis, four SNPs were selected for further studies of proteolytic activity of different peptide substrates, including Αβ.

The AD cases were recruited at the Memory clinic at the Department of Geriatrics, Karolinska University Hospital, Huddinge, Sweden after informed consent by the subjects or a proxy and the study was approved by the local ethics committee. The cases were: 256 unrelated familial AD (FAD) cases having at least one affected, first-, or second-degree relative; 417 late onset clinical AD (CAD) cases without a positive family history. Cases with mutations in *APP* and *PSEN 1* and 2 were excluded. The National Institute of Neurological and Communicative Disorders and stroke–Alzheimer's Disease and Related Disorders Association criteria [13] were used for the diagnosis.

Two control sample sets were used for the CAD and FAD cases including 348 (SNACK I) and 301 (SNACK II) subjects, respectively (Supplementary Table 1). Controls were randomly selected and frequency matched for sex and age from 3500 individuals included in the ongoing, longitudinal study SNACK (The Swedish National Study on Aging and Care in Kungsholmen [7]; http://www.aldrecentrum.se/snack). All controls had a Mini-Mental State Examination ≥ 28. DNA was extracted from whole blood according to standard protocols.

Tagged SNPs were selected based on the genotypes from the CEPH European panel in the Hapmap database (rs7079217, rs2306319, rs7898695, rs4881109, rs3752802, rs4880597, rs9423705, rs7900718, rs6602033). The minor allele frequency was >0.20, the minimal coefficient of determination (r^2) at which all alleles were to be captured was >0.80 and multi-marker (haplotype) tagging was used [7]. The mean r^2 for all common alleles in the CEPH reference panel was 0.94 and the lowest observed r^2 was 0.81.

To further cover the coding regions of *PITRM1*, including the location of the active sites [8], we genotyped eight additional coding SNPs (rs2388560, rs3740607, rs3765101, rs3182535, rs4242746, rs4609511, rs3814596, rs12359035). Rs12359035, located in exon 4 where the reported active site is located [8], had a low success rate (85%) in the genotyping process and was thus replaced by rs 4242748 an intronic SNP, located 53 bp upstream of the active site, and in strong linkage disequilibrium, with rs12359035 (LD; D'=1 and $T^2=1$). Rs12248937 was genotyped since our functional data suggested a lower proteolytic activity for this SNP. All SNPs are listed in Supplementary Table 2 and available at http://www.Hapmap.org.

The ABI PRISM® 7000 Sequence Detection System (Applied Biosystems, USA) was used for genotyping SNPs *rs4242748* and *rs12248937* and PCRs were performed using the TaqMan Universal PCR Master Mix according to the manufacturer's protocol (Applied Biosystems, USA). The other 17 SNPs were genotyped at the Mutational Analysis Facility (MAF) Karolinska Institutet, using

Sequenom MassARRAY technology (Sequenom Inc., San Diego, CA, USA).

All SNPs were tested for Hardy Weinberg Equilibrium (HWE) in the individual sample sets and in the combined sample set both in cases and controls. Allelic and genotypic associations were investigated as two-sided *P*-values obtained by Chi-squared analysis. For the combined sample set we used logistic regression (LR) analysis in order to correct for potential sampling differences among the two case groups (FAD and CAD) (Supplementary Table 3). SPSS version 14.0 was used for all the above-mentioned statistical analyses. Haploview 3.32 (URL: http://www.broad.mit.edu/mpg/haploview/) was used for estimating linkage disequilibrium (LD) and for the haplotype association analyses (http://www.hapmap.org).

Selected hPreP-SNP variants were generated using the Quick-Change Site Directed Mutagenesis Kit (Stratagene) with a pGEX-6P-2 plasmid (Amersham Biosciences) containing mature wt hPreP as template. The corresponding recombinant proteins were overexpressed and purified according to [8,12].

The proteolytic activity of wt hPreP and hPreP-SNP variants was measured using 1 µg purified protein and 1 µg substrate peptide pF₁ β , A β (1–40) or A β (1–42) in degradation buffer containing 20 mM HEPES-KOH, pH 8.0. The samples were incubated at 37 °C for 5–30 min when using pF₁ β and for 30 min with $A\beta(1-40)$ and $A\beta(1-42)$. The reaction was stopped by the addition of 2× Laemmli sample buffer, and analyzed on 10-20% Tris-Tricine gels (Bio-Rad) stained with Coomassie Brilliant Blue. Kinetics of proteolysis were monitored using the fluorogenic peptide Substrate V (7-methoxycoumatin-4-yl-acetyl-RPPGFSAFK-2,4-dinitrophenyl, R&D Systems). 1 µg hPreP in degradation buffer was mixed with 1.5 µg Substrate V. The hydrolysis of Substrate V was measured for 120 s using a fluorometer (Fluorolog Jobin Yvon, Horiba group) with excitation and emission wavelengths of 320 nm and 405 nm, respectively. All the assays were performed in the presence or absence of 10 mM MgCl₂.

Seventeen SNPs, spanning the whole PITRM1 gene were analyzed in two Swedish case-control sample sets (Fig. 1). All SNPs were in HWE both in the individual sample sets (FAD and CAD) and in the combined sample series. Using Chi-square analysis, we could not find any genotypic or allelic association between any of the genotyped SNPs in PITRM1 and AD in the two individual sample sets. Logistic regression was used to exclude sampling differences between the two case groups (CAD and FAD). This was done by adding "case group" as a variable in the analysis. Since this variable was not significant, i.e. there was no significant difference in genotype distribution between the two case groups, we used chi-square analysis for the association testing of the total sample set. No significant allelic or genotypic association was found to any of the genotyped SNPs in the combined sample set. We also tested for haplotype association in the two sample sets, both individually and combined, without detecting significant haplotype association. Chi-square analysis was not possible for SNP rs12248937 since this SNP was monomorphic (only the G allele was identified in our population) and therefore it was withdrawn. The P-values from the different association analysis in this study were all >0.09, and therefore considered non-significant (Supplementary

SNPs with identification numbers *rs9423502*, *rs3814596*, *rs12248937* and *rs2279219*, corresponding to mutations in the mature protein L116V, F140S, A525D and I924M, respectively, were selected out of 18 non-synonymous hPreP-SNPs based on their location in the hPreP structural model (Fig. 2A and B). The structural model of hPreP revealed that the protease is arranged in four domains, forming two enzyme halves, connected by a hinge region. Active site residues are located in both halves, which interact to form a large peptidasome chamber [8,12]. Leu-116 is located

Download English Version:

https://daneshyari.com/en/article/4346644

Download Persian Version:

https://daneshyari.com/article/4346644

<u>Daneshyari.com</u>