
Science of Computer Programming 126 (2016) 94–110

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Parameterised three-valued model checking

Nils Timm ∗, Stefan Gruner

Department of Computer Science, University of Pretoria, South Africa

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 March 2015
Received in revised form 14 January 2016
Accepted 28 January 2016
Available online 1 February 2016

Keywords:
Three-valued logic
Three-valued abstraction
Parameterisation
Model checking
Counterexample-guided abstraction 
refinement

Three-valued abstraction is an established technique in software model checking. It 
proceeds by generating a state space model over the values true, false and unknown, 
where the latter value is used to represent the loss of information due to abstraction. 
Temporal logic properties can then be evaluated on such models. In case of an unknown 
result, the abstraction is iteratively refined until a definite result can be obtained. In this 
paper, we present and extend our work on parameterised three-valued model checking 
(PMC). In our parameterised three-valued models, unknown parts can be either associated 
with the constant value unknown or with expressions over boolean parameters. Our 
parameterisation is an alternative way to state that the truth value of certain predicates 
or transitions is actually not known and that the checked property has to yield the same 
result under each possible parameter instantiation. A specific feature of our approach is 
that it allows for establishing logical connections between parameters: While unknown 
parts in pure three-valued models are never related to each other, our parameterisation 
approach enables to represent facts like ‘a certain pair of transitions has unknown 
but complementary truth values’, or ‘the value of a predicate is unknown but remains 
unchanged along all states of a certain path’. We demonstrate that such facts can be 
automatically derived from the system to be verified and that covering these facts in an 
abstract model can be crucial for the success and the efficiency of checking temporal 
logic safety and liveness properties. Parameterisation enhances the precision of three-
valued models without increasing their state space, but it leads to an exponential increase 
in time complexity, since any property of interest must be checked for each possible 
parameter instantiation. In this extended paper, we introduce a novel algorithm for direct 
parameterised three-valued model checking that straightly explores the parameterised 
state space and thus avoids to construct all instantiations explicitly. We present example 
verification tasks where the application of our direct algorithm considerably reduces the 
time effort of PMC.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Predicate abstraction [1] is an established technique for reducing the complexity of temporal logic model checking. It 
proceeds by generating a state space model of the software system to be analysed. In this model, concrete states of the 
system are mapped to abstract states over a finite set of predicates, and admissible executions of the system are represented 

* Corresponding author.
E-mail addresses: ntimm@cs.up.ac.za (N. Timm), sg@cs.up.ac.za (S. Gruner).

http://dx.doi.org/10.1016/j.scico.2016.01.006
0167-6423/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2016.01.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:ntimm@cs.up.ac.za
mailto:sg@cs.up.ac.za
http://dx.doi.org/10.1016/j.scico.2016.01.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2016.01.006&domain=pdf


N. Timm, S. Gruner / Science of Computer Programming 126 (2016) 94–110 95

by sequences of transitions between states. Traditional predicate abstraction techniques are based on a boolean domain for 
predicates and on an over-approximation of the concrete state space. Thus, only universal properties are preserved under 
this form of abstraction. If checking a universal property for an abstract model yields false, it cannot be concluded that the 
original system violates this property as well. In this case, model checking additionally returns an abstract counterexample
— a path in the model that refutes the property. In order to gain certainty about whether this counterexample is spurious 
or corresponds to a real path, it has to be simulated on the original system. The simulation of counterexamples involves a 
partial exploration of the concrete state space, and thus, can be exceedingly costly. Spurious counterexamples are typically 
ruled out via counterexample-guided abstraction refinement (CEGAR) [2]: Further predicates over the variables of the system 
are iteratively added to the model until a level of abstraction is reached where the property can be either definitely proved 
or a real counterexample can be found. The application of CEGAR does, however, not guarantee that eventually a model can 
be constructed that is both precise enough for a definite outcome and small enough to be manageable with the available 
computational resources.

More recent approaches [3–5] to abstraction refinement for model checking are based on a domain for predicates with 
the truth values true, false and unknown. Corresponding three-valued models with the additional value unknown enable to 
explicitly model the loss of information due to abstraction. In comparison to boolean abstractions, the three-valued approach 
is capable of preserving universal and existential properties. Hence, all definite results in three-valued model checking can 
be directly transferred to the original system. Only an unknown result necessitates iterative refinement. In the latter case, 
an unconfirmed counterexample – a potential error path in the model with unknown transitions and predicates – is returned. 
Unconfirmed counterexamples directly hint at necessary refinement steps. Thus, the costly simulation of counterexamples on 
the original system is not required in the three-valued setting. Model checking three-valued abstractions can be conducted 
at the same cost as checking boolean abstractions, but it additionally comes along with the aforementioned advantages.

Continuative work in this field has shown that the precision of model checking three-valued abstractions can be increased 
by the concept of generalised model checking (GMC) [6]. While standard three-valued model checking (3MC) [3–5] is based on 
a special three-valued semantics that enables the direct evaluation of temporal logic formulae on three-valued models, the 
idea of GMC is to construct all boolean concretisations of a three-valued model. Then classical two-valued model checking is 
applied to each concretisation and it is checked whether the results are consistent, i.e. whether either all results are true or 
whether all are false. In case of consistency, the result can be transferred to the original system. GMC generally yields more 
definite results than 3MC. Hence, the application of GMC instead of 3MC can reduce the number of necessary refinement 
iterations in abstraction-based verification. However, the 3MC problem is PSPACE-complete [3], whereas the GMC problem 
is even EXP-complete [6]: Number and size of concretisations can be exponential in the size of the three-valued model. 
Thus, GMC is rather of theoretical than of practical inter- est. Most existing three-valued abstraction-based verification 
frameworks, such as [5,7,8], rely on standard 3MC and try to compensate the lack of precision with additional refinement 
steps.

In this paper, we present and extend our work on parameterised three-valued model checking (PMC) [9] which is a hybrid 
of three-valued and generalised model checking. Predicates and transitions in parameterised three-valued models can be 
either associated with the values true, false or unknown – or with expressions over boolean parameters. Parameterisation 
is an alternative way to state that the truth value of certain predicates or transitions is actually not known and that the 
checked property has to yield the same result under each possible parameter instantiation. PMC is thus generally conducted 
via evaluating a temporal logic formula under all parameter instantiations and checking whether the results are consistent. 
Parameterisation particularly allows to establish logical connections between unknowns in the abstract model: While un-
known parts in 3MC and GMC are never related to each other, our parameterisation approach enables to represent facts like 
‘a certain pair of transitions has unknown but complementary truth values’, or ‘the value of a predicate is unknown but re-
mains unchanged along all states of a certain path’. Such facts can be automatically derived from the software system to be 
verified and covering these facts in an abstract model can be crucial for the success and the efficiency of checking temporal 
logic properties. We developed an automatic verification framework for concurrent systems based on parameterised three-
valued model checking: Starting with pure three-valued abstraction, in each iteration either classical refinement or param-
eterisation of unknown parts is applied until a definite result in verification can be obtained. The decisions for refinement 
or parameterisation are automatically made based on unconfirmed counterexamples. Such a combination of classical refine-
ment and parameterisation in abstraction-based model checking is highly suited for obtaining the necessary precision for a 
definite result in verification while keeping the state space small. Our approach so far works for checking safety properties 
of the form ‘always p’ and liveness properties of the form ‘always eventually p’, where p is an atomic predicate.

Parameterisation does not increase the space complexity but it leads to an exponential growth in time complexity. 
A definite outcome in verification requires a model checking run for each possible parameter instantiation and a check 
whether all single results are consistent. In our previous work [9], we performed PMC by constructing all instantiations 
and considering them separately. Here, we introduce a direct algorithm for parameterised three-valued model checking. Our 
novel algorithm straightforwardly explores the parameterised state space. Its worst-case time complexity is still exponential 
in the number of parameters – each state might be explored exponentially often. However, we demonstrate that for several 
application examples our direct approach enables us to keep the number of exploration steps small and thus to achieve a 
significantly enhanced runtime performance. Our work includes a proven theorem on the correctness of our algorithm.

The remainder of this paper is organised as follows. Section 2 provides the background on three-valued model checking. 
Section 3 introduces our new concept parameterised three-valued model checking. In Section 4 we demonstrate how PMC 



Download English Version:

https://daneshyari.com/en/article/434777

Download Persian Version:

https://daneshyari.com/article/434777

Daneshyari.com

https://daneshyari.com/en/article/434777
https://daneshyari.com/article/434777
https://daneshyari.com

