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Vicarious function in the motor cortex
A computational investigation
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Abstract

This paper presents a computational investigation of the vicarious function in the motor cortex (c/o the ability to reorganise its functioning
by virtue of a shift of the lost function in the surrounding cortex which becomes able to vicariate). Several experimental studies in animals and
humans have shown that motor recovery after partial destruction of the motor cortex is based on adjacent motor reorganisation. This study provides
phenomenological evidence of this vicarious function. We tested the hypothesis according to which the vicarious function is possible because
there is a synaptic rearrangement of the weights (which are comparable to the synapses of the brain) of the lesioned layer (unmasking of previous
silent synapses hypothesis), and our results confirm this hypothesis. We argue that functional recovery is possible only when having bidirectional
connections and that it is facilitated when non-M1 areas can guide the layer to relearn the lost movement.
© 2008 Elsevier Ireland Ltd. All rights reserved.
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Recovery of a motor or cognitive function after a stroke can be
due to several factors, including events in the first days (e.g.,
reabsorption of edema, tissue reperfusion), and more slow pro-
cesses lasting for months such as cortical reorganisation [16].
Of great interest for the present study are the second class of
mechanisms. Cross-sectional PET and fMRI studies of hand
movement after full recovery have shown that patterns of activa-
tion after stroke are significantly different from those of normal
individuals [see 16 for a review]. However, the reasons for such
differences are not clear.

Several experimental studies in animals [4,5,10] have shown
that motor recovery after partial disruption of the motor cortex
is based on adjacent motor reorganisation suggesting a vicarious
function in the motor cortex. In a longitudinal study, Jaillard et
al. [7] examined four patients suffering from ischaemic stroke
limited to the M1 area. The test comprised two motor tasks: a
finger tapping and a finger extension. They reported a progres-
sive dorsal shift of the area activated by the tasks in respect of
controls, reflecting an increasing functional reorganisation of
the surrounding cortex. After 2 years the four patients showed
a complete recover of the finger motor tasks in the intact dorsal
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M1. An additional observation was that motor-related activation
of supplementary motor area (SMA) correlates with faster and
better motor recovery [9]. This finding has been interpreted as
reflecting an adaptive response to an increased demand related
to the need to relearn the motor tasks after stroke [7].

Despite the fact that motor recovery observed after lesion
is well documented in the literature [3,11–13], the attempts to
study the underlying neural mechanisms are very few. There are
three hypotheses generated to account for the “vicarious func-
tioning”: the first namely “synaptogenesis”, refers to the creation
of new synapses in the surrounding area, the second “dendritic
arborisation”, refers to the expansion and/or creation of new
dendrites, the third “unmasking of silent synaptic connections”,
by which the synapses that were silent up that moment, start
changing and functioning. Even though imaging techniques and
animal studies showed that a cortical reorganization does exist
in the brain, unfortunately they cannot tell us anything about
the mechanisms that permit this recovery. By means of compu-
tational simulations it is possible to study these problems with
formal models in which different hypotheses can be tested to
show which is the best in reproducing the effect.

In this study we tested the hypothesis whether after a lesion
of the area corresponding to a movement, an artificial neural net-
work system is able to recover the function by vicarious learning
focusing on the mechanism of the “unmasking of previous silent
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synapses”. We also tried to investigate the potential factors that
make this relearning possible. We decided to implement the same
motor tasks used in the study of Jaillard et al. [7] (finger tapping
and extension). To pursue our aims we bore in mind two relevant
observations derived from the literature: (1) the importance of
the time of rehabilitative training and (2) the role of other non-M1
areas in influencing the task performance during relearning (as
for example the SMA, in [9], or the same controlateral regions
via transcallosal connections, in [16]).

We built a simple phenomenological model to study the vicar-
ious learning, focusing on the mechanism of the “unmasking
of previous silent synapses”. This approach is contributive as
a meta-model of plasticity mechanisms. However, it is not the
case in which the model enables us to account for all the phe-
nomena such as degree of ischaemia, edema, physiology of the
movement.

The model is a multi-module neural network consisting of
four layers [see Fig. 1 and Appendix A for technical details].
The input layer encodes both the movements schema (finger
tapping and extension). This layer consists of a matrix of 2 × 7
units with one set of units representing observed actions (tap-
ping and extension) and another executed actions (tapping and
extension). The input layer is connected to an “action represen-
tation” (AR) layer consisting of a matrix of 2 × 7 units with one
set of units representing observed actions and another executed
actions. The latter has a bidirectional connection with the “action
schema” (AS) layer (where observation and execution are effec-
tively collapsed into schemas for each action). This layer consists
of a matrix of 10 × 12 units in which the two movements (one
representation for the observed and executed tapping, and one
for the observed and executed extension) are coded. The action
schema is in turn connected to the output layer (2 units).

The two motor tasks, the “finger tapping” and the “finger
extension” are implemented as different attractors. Their kind of

representation changes for each layer: in both the input layer and
the AR layer, the two movements are represented in an abstract
and more symbolic way (one unit per movement obtained by
implementing a Winner-Takes-All algorithm [6,14,15]); while
in the AS layer, the implementation is more realistic with 8 units
that respond for each movement (obtained by a modified version
of the k-Winners-Take-All in which k = 8 units are active). It is
important to stress that in this simulation we are interested in
studying the recovery of the representation which permits the
execution of the movement, and not in all the parameters related
to the execution of the movement itself (kinematics) such as
speed, strength or angular acceleration.

The model of artificial neural network developed here [see 6
for further details], is a simple not-completely recurrent neural
network which is able to reproduce finite-states attractor dynam-
ics: once the input is given the net performs several cycles in
which the weights are updated to reach the final, stable state.
The number of cycles to reach this state can be viewed as the
time of the net to perform the task.

Learning employed O’Reilly’s LEABRA (Learning in an
Error-driven and Associative, Biologically Realistic Algorithm:
[14]) formalism. This is based on point-neuron activation func-
tion with k-Winners-Take-All inhibition (that achieves sparse
distributed representations with Gaussian distribution by means
of inhibitory interconnections) and a plausible version of the
error-driven learning [1] in which the contrast between posi-
tive and negative phase is used to adjust the weights in a local
fashion, without external teaching signal:

Δwij = (x+
i y+

j ) − (x−
i y−

j )

The algorithm minimises the distance between the two dis-
tributions.

The network was trained by presenting the following pairs of
input–output associations: (1) finger extension movement in the

Fig. 1. Upper part: The model of the artificial neural network is shown as well as examples of movements’ representation. See text for details. Lower part:
Development of sparse distributed representation for finger tapping and finger extension. (A) The number of cycles the net requires to execute the two tasks (RTs).
(B) The representation for the finger extension. (C) The representation for the finger tapping.
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