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A fault-tolerant routing algorithm in Network-on-Chip (NoC) architectures provides adap-
tivity for on-chip communications. Adding fault-tolerance adaptivity to a routing algorithm 
increases its design complexity and makes it prone to deadlock and other problems 
if improperly implemented. Formal verification techniques are needed to check the 
correctness of the design. This paper describes the discovery of a potential livelock 
problem through formal analysis on an extension of the link-fault tolerant NoC architecture 
introduced by Wu et al. In the process of eliminating this problem, an improved routing 
architecture is derived. The improvement simplifies the routing architecture, enabling 
successful verification using the CADP verification toolbox. The routing algorithm is proven 
to have several desirable properties including deadlock and livelock freedom, and tolerance 
to a single-link-fault.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Cyber-physical systems (CPS) have ubiquitous applications in many safety critical areas such as avionics, traffic control, 
robust medical devices, etc. As an example, the automotive industry makes active use of CPS: modern vehicles can have 
up to 80 electronic control units (ECUs), which control and operate everything from the engine and brakes to door locks 
and electric windows. Currently, each ECU is statically tied to its specific sensors and actuators. This means that processing 
power between different ECUs cannot be shared, which degrades the performance of the chip due to imbalanced workload 
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on each ECU. More importantly, this structure is susceptible to faults since if an ECU fails, it causes a malfunction in the 
corresponding sensor and/or actuator. With advances in semiconductor technology, it is now possible to have multiple cores 
on a single chip that communicate using the Network-on-Chip (NoC) paradigm. A NoC approach allows a flexible mapping 
of ECUs to processing elements, which makes it possible for ECUs to share processing power and tolerate faults by having 
spare units.

Wormhole routing has been utilized in many NoC designs, such as Aethereal [1], Hermes [2], and QNoC [3]. It is a 
switching technique that routes a packet of data in small units, known as flits. A packet travels through the network like 
a worm, and it typically consists of a header flit with the packet’s destination, body flits carrying the packet’s information, 
and a tail flit indicating the end of the packet. This paper presents the verification of an asynchronous NoC architecture that 
supports a link-fault tolerant routing algorithm [4] extended to a multiflit wormhole routing setting. A unique feature of the 
routing algorithm for this NoC architecture is that it uses a deadlock avoidance rather than a deadlock prevention scheme. In 
other words, rather than creating a routing algorithm that is proven to be deadlock-free, potential deadlocks are detected 
and avoided by dropping packets. To the best of our knowledge, this work is the first formal verification of a deadlock 
avoidance routing function. The verification takes advantage of the CADP (Construction and Analysis of Distributed Processes) 
toolbox [5] and its process-algebraic modeling language LNT (formerly LOTOS New Technology) [6].

Previous work on the verification of this routing algorithm [7] applies data abstractions to enable model checking of 
deadlock freedom and single-link fault tolerance. It, however, is flawed in that the abstract model does not include certain 
routing failure cases that are present in its concrete counterpart. This paper uses an example to illustrate the flaws in the 
abstraction and provides a refined, corrected abstraction. During this correction process, redundant fault-tolerance behaviors 
are found to cause livelocks in the presence of multiple faults. Through a series of diagnostic examples on the concrete 
model, an improvement to avoid livelocks is made on the NoC architecture and model. Deadlock and livelock freedom, single 
link-fault tolerance, and packet delivery are formally analyzed. Finally, this paper describes several remaining challenges to 
the verification of this and similar systems.

This paper is organized as follows. Section 2 describes the NoC architecture and routing algorithm. Section 3 discusses 
a livelock problem discovered through formal analysis. Section 4 presents an improvement of the NoC routing algorithm to 
avoid livelocks. Section 5 presents verification results for deadlock and livelock freedom, and properties of single-link fault 
tolerance and packet delivery. Section 6 surveys related work. Section 7 discusses the insights obtained from using model 
checking in the design of the NoC architecture and some future research directions.

2. Network-on-Chip architecture and routing algorithm

A fully functional NoC system has to be fault-tolerant and free of deadlocks. The Glass/Ni fault-tolerant routing algo-
rithm [8], guarantees deadlock freedom by disallowing certain turns (i.e., changes in routing direction) in the network, so 
that communication cycles cannot occur. However, the Glass/Ni routing algorithm uses the node-fault model, where a fault 
in an incoming link is interpreted as the complete node failing. Not only does this mean losing the ability to route to an 
otherwise functional node, but if the node does not actually stop operating, it can potentially introduce deadlock in the 
network. Imai et al. proposed a modified version [9] that achieves one link-fault tolerance by introducing a mechanism to 
forward link fault locations to a neighboring routing node allowing for a route selection that avoids the faulty link. This 
fault forwarding method though can still result in a deadlock at the edges of a mesh network, so in these cases, it must 
revert to the node-fault model. Wu et al. described an improvement [4] that is capable of handling link faults anywhere in 
the network. A feature of this routing algorithm is its flexible fault-tolerance mechanism. It handles transient link failures 
and allows illegal turns whenever there is no danger of a cyclic communication dependency creating a deadlock. In case a 
potential cyclic communication dependency is detected, deadlock is avoided by dropping the packet that attempts to make 
an illegal turn, which effectively breaks the cycle. In other words, this routing algorithm only drops packets whenever there 
is a potential to form a cycle of dependencies. It is this deadlock avoidance scheme that this paper attempts to improve 
upon and to formally verify.

There are nine types of router nodes for this architecture as depicted in the three-by-three mesh shown in Fig. 1. Namely, 
there are four types of corner nodes (i.e., nodes 00, 02, 20, and 22), four types of edge nodes (i.e., nodes 01, 10, 12, 21), 
and one type of center node (i.e., node 11). A larger network would include duplicates of the routers shown here. This 
architecture implements an extended version of the routing algorithm [4] described by Wu et al. The original algorithm 
assumed single-flit packets and that each node could route only a single packet at a time, while this modified architecture 
allows each node to potentially have several multi-flit packets in flight at a time. For example, node 00 may be routing 
a packet from node 01 to node 10, while simultaneously routing a packet from node 10 to node 01. To accomplish this, 
each node xy is composed of several independent routers (r_D_xy) and arbiters (arb_D_xy), where D ∈ {PE, E, N, S, W}
corresponds to the direction the packet is coming from in the case of routers and going to in the case of arbiters. Notice 
that because arbiters need storage capacity to avoid deadlocks [7, Section 4.2], it is necessary to keep them separate from 
the routers.1

1 One might argue that it is not necessary to include the arbiters arb_PE_xy in the model, because we assume that a processing element is always ready 
to consume a packet, so that there is nothing to arbitrate. However, to be closer to the real circuit, we prefer to keep these processes, in particular because 
they do induce only a small performance penalty in verification execution time.
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