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The problem addressed in this paper is sound, scalable, demand-driven null-dereference 
verification for Java programs. Our approach consists conceptually of a base analysis, plus 
two major extensions for enhanced precision. The base analysis is a dataflow analysis 
wherein we propagate formulas in the backward direction from a given dereference, and 
compute a necessary condition at the entry of the program for the dereference to be 
potentially unsafe. The extensions are motivated by the presence of certain “difficult” 
constructs in real programs, e.g., virtual calls with too many candidate targets, and library 
method calls, which happen to need excessive analysis time to be analyzed fully. The base 
analysis is hence configured to skip such a difficult construct when it is encountered by 
dropping all information that has been tracked so far that could potentially be affected by 
the construct. Our extensions are essentially more precise ways to account for the effect 
of these constructs on information that is being tracked, without requiring full analysis of 
these constructs. The first extension is a novel scheme to transmit formulas along certain 
kinds of def–use edges, while the second extension is based on using manually constructed 
backward-direction summary functions of library methods. We have implemented our 
approach, and applied it on a set of real-life benchmarks. The base analysis is on average 
able to declare about 84% of dereferences in each benchmark as safe, while the two 
extensions push this number up to 91%.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Null-dereferences are a bane while programming in pointer-based languages such as C and Java. In this paper, we de-
scribe a sound, context-sensitive, demand-driven technique to verify dereferences in Java programs via over-approximated 
weakest pre-conditions analysis. A weakest pre-condition wp(p, C) is the weakest constraint on the initial state of the pro-
gram that guarantees that the program state will satisfy the condition C every time control reaches the point p. We define 
the notion of weakest at-least once pre-condition, denoted as wp1(p, C), as the weakest constraint on the initial state of 
the program that guarantees that execution will reach p at least once in a state that satisfies C . Note that for any (p, C), 
wp1(p, C) = ¬wp(p,¬C). We can use the weakest at-least once pre-condition to check if a selected dereference of a vari-
able or access-path v at a given program point p is always safe. This can be done by checking if wp1(p, v = null) is false. 
However, the weakest at-least-once pre-condition is in general not computable precisely in the presence of loops or re-
cursion; hence, our approach uses an abstract interpretation [1] to compute an over-approximation of it. After our analysis 
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1: foo(a,b,c) {
2: if(a �= null) { 〈b.f= null,a �= null,a= null〉 ≡ false
3: b = c; false
4: t = new...; 〈b.f= null,b �= c,a �= null〉
5: c.f = t; 〈b.f= null,b �= c,a �= null〉, 〈t= null,b= c,a �= null〉
6: }
7: d=a; 〈b.f= null,a �= null〉
8: if(d �= null) 〈b.f= null,d �= null〉
9: b.f.g = 10; 〈b.f= null〉
10:}

Fig. 1. Example to illustrate the base analysis. The dereference of field f in line 9 is being verified.

terminates, we check if the computed over-approximation of wp1(p, v = null) is false; if yes, it would imply that the precise 
solution is also false, implying the safety of the dereference. On the other hand, if the over-approximation is satisfiable, we 
declare the dereference as potentially unsafe.

Each element in the lattice that we use for abstract interpretation is a representation of a formula in disjunctive normal 
form, with each literal being a predicate that compares an access path with another access path or with null. An access path 
is a variable, or a variable followed by fields, e.g., v. f1. f2... fk , that points to an object (i.e., is not of primitive type). The 
lattice elements are ordered by implication, where weaker formulas dominate stronger formulas; our join operation basically 
implements logical or. We illustrate our lattice as well as our analysis using an example, shown in Fig. 1. Our notation is to 
show the formula that holds at the point above any statement to the right of the statement. Also, we enclose each disjunct
in a formula (except the disjuncts true and false) within angle brackets, and indicate both conjunctions of predicates within 
a disjunct as well as disjunctions of disjuncts using commas. Note in the example that there are two disjuncts at the point 
above line 5, and a single disjunct at all other points. The underlining of certain predicates in the example can be ignored 
for now, and will be addressed later.

The input to our approach is a dereference that needs to be verified, which we refer to as the root dereference. In the 
example, the root dereference is that of b.f in line 9. Therefore, the first step in the approach is to initialize the formula 
at the point above line 9 to 〈b.f= null〉, as shown to the right of line 9. The analysis proceeds by propagating formulas in 
a backwards direction, using conservative transfer functions which over-approximate the weakest pre-condition semantics 
of each statement. The final result of this propagation at all points is shown in the figure. Assuming that the method foo
is the entire program, the computed over-approximation of wp1(line 9, 〈b.f = null〉), which is shown adjacent to line 2, 
is false; hence, the root dereference is declared safe. We postpone a detailed discussion and illustration of our analysis to 
subsequent sections in the paper.

1.1. Challenges

The obvious advantage that a backwards analysis such as ours has over a forward counterpart is that it is demand-driven, 
meaning a single selected dereference can be verified. This is a very useful feature in a real world setting, where most 
changes are incremental and affect only a small part of a program. Thus, the developer will be able to verify the dereferences 
in the part of code that is modified, without paying the price of analyzing all dereferences in the program. There are several 
reasons why analyzing a single dereference in the backwards direction can be much more efficient than analyzing all the 
dereferences in the program using a forwards analysis; we postpone a detailed discussion of this to Section 2.5.

This said, a backwards analysis poses its own set of challenges. The first problem is that in order to obtain high precision 
we would need to perform strong updates on formulas that refer to fields of objects when they are propagated back through 
“put field” statements that write to fields of objects. However, techniques for performing strong updates on formulas have 
been proposed in the literature only for forward analyses. These techniques do not carry over naturally to the backward 
setting. The second problem is the resolution of virtual calls in large object-oriented programs. While a forward analysis 
could potentially use path-specific points-to information [2] to derive a precise set of targets for a virtual call, a backwards 
analysis would need to rely on imprecise may points-to information to identify an over-approximation of the candidate 
targets at a virtual call.

There are other problems we face that are shared by forward counterparts, too. Java programs make extensive use of 
libraries; entering and analyzing all library methods would take a heavy toll on the scalability of the technique. The usage of 
recursive data structures such as linked lists and trees, and the usage of arrays, pose challenges to any analysis, because code 
that uses these structures is hard to analyze precisely in an efficient manner. Shape analysis [3] is a sophisticated technique 
that has been proposed to handle recursive data structures, but it does not scale to programs of sizes we are interested in
its current state of evolution. Finally, context-sensitivity and path-sensitivity are typically required for precision, but can be 
complex or expensive to implement.

1.2. The base analysis

Our approach consists of two parts: 1) the base analysis, and 2) an extended analysis, which is the base analysis plus two 
major extensions. The base analysis was originally proposed, discussed, and evaluated by Madhavan and Komondoor [4]. The 
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