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Systematic exploration of all possible thread interleavings is a popular approach to detect 
errors in multi-threaded programs. A common strategy is to use a partial order reduction 
technique and perform a non-deterministic thread scheduling choice only when the next 
instruction to be executed may possibly read or modify the global state. However, some 
verification frameworks and software model checkers, including Java Pathfinder (JPF), 
construct the program state space on-the-fly during traversal. The partial order reduction 
technique built into such a tool can use only the information available in the current state 
to determine whether the execution of a given instruction is globally-relevant. For example, 
the reduction technique has to make a thread choice at every field access on a heap object 
reachable from multiple threads, even in the case of fields that are really accessed only by 
a single thread during program execution, because it does not have any information about 
what may happen in the future after a particular state. These conservative decisions cause 
many redundant thread choices.
We propose static analyses that identify globally-relevant field accesses more precisely. For 
each program state, the analyses give information about field accesses that may occur in 
the future after the given state. The state space traversal algorithm can use this information 
to soundly avoid creating unnecessary thread choices, and thus to reduce the number of 
thread interleavings that must be explored to cover all distinct behaviors of the given 
program. We implemented the proposed analyses using WALA and integrated them with 
JPF. Results of experiments on several Java programs show that the static analyses greatly 
improve the performance and scalability of JPF. In particular, it is now possible to check 
more complex programs than before in reasonable time.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Automated techniques for detecting concurrency errors in multi-threaded programs are becoming very important with 
the proliferation of multi-core architectures. The biggest challenge is to design techniques that have good performance and 
scale to large programs, so that they are practically useful.

One group of techniques is based on systematic state space traversal. Their goal is to explore all reachable states of 
the program under all possible thread interleavings to find property violations (errors). The number of possible thread 
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interleavings is huge even for small programs with a few threads, but many optimizations have been developed. The most 
prominent of them is partial order reduction (POR) [16].

The key idea of POR is to create a thread scheduling choice (thread context switch) at a point in the program exe-
cution only when the instruction to be executed next may read or modify the global state shared by multiple threads. 
We call the execution of the instruction globally-relevant in this case, and thread-local otherwise. We distinguish between 
a static instruction in the program code and its execution in a particular program state. A single static instruction can 
have both globally-relevant and thread-local executions in different program states. Globally-relevant instruction executions 
represent interaction between threads. Instructions whose execution may be globally-relevant include thread synchroniza-
tion operations and accesses to objects shared between multiple threads. The effects of a thread-local instruction execution 
are invisible to and independent of the concurrent behavior of other threads. Thread interleavings that differ only in the 
scheduling of thread-local instruction executions yield the same observable behavior. Therefore, no thread scheduling choice 
is needed when the next instruction execution on the current thread is thread-local. To cover every possible observable 
behavior of the given program, it is sufficient to explore all thread interleavings that differ in the order of globally-relevant 
instruction executions.

More specifically, the state space traversal with partial order reduction works as follows. At any point in the program’s 
execution, one thread is running, and some subset of other threads are ready to run. Let i be the next instruction to 
be executed on the currently running thread. In order to explore all thread interleavings, a verification tool would have 
to explore the interleaving where i is executed next, and also the interleavings in which actions of other threads occur 
before i. Typically, the tool starts with the state space path in which the current thread continues and executes i, and 
later backtracks to the current state and switches to each of the other ready threads in turn to allow them to run before 
executing i. However, suppose that the execution of i is thread-local. In that case, the program behavior is independent of 
whether i is executed before or after other threads have been allowed to run, and therefore it is sufficient to execute i first 
and not consider switching to other threads at this point. As a result, the sequences of executed instructions can be divided 
into blocks such that execution of all but the first instruction in each block is thread-local. The state space is then explored 
by treating each block as an atomic step. That is, all interleavings of such blocks are explored, rather than interleavings 
at the granularity of individual instructions. This way, if the verification tool runs to completion, it is guaranteed that the 
behaviors of all interleavings of executed instructions have been explored, because the observable program behavior depends 
only on thread switches immediately before the execution of the first instruction of each block.

Nevertheless, despite partial order reduction and many other optimizations, systematic checking of all thread interleav-
ings with distinct behaviors is still very time-consuming and is thus currently applicable only to relatively small programs. 
A specific challenge is to determine, for each instruction used in the program code, which of its executions are globally-
relevant and which are thread-local. There exist both static and dynamic approaches (see, for example, [13,15,16]) that 
provide conservative approximations of different precision. The efficiency of state space traversal depends crucially on 
precisely identifying as many thread-local instruction executions as possible, so that the blocks are as long as possible. 
Performance suffers if the blocks are shorter than necessary, because shorter blocks imply more thread scheduling choices 
and therefore exponentially more thread interleavings to explore.

Two well-known tools that implement state space traversal and some form of POR are Java Pathfinder [20] and 
CHESS [29]. In this paper we focus on the partial order reduction technique used in Java Pathfinder (JPF). We describe 
partial order reduction, some other important concepts, and especially the proposed techniques in the context of model 
checking of multi-threaded Java programs with JPF.

JPF constructs the program state space on-the-fly, i.e., it is not created in advance before the state space traversal, 
and therefore the partial order reduction technique in JPF can use only information in the current state to determine 
whether the execution of a given instruction may be globally-relevant. This strategy is too conservative because it does 
not look ahead in the program execution and does not consider any information about what may happen in the future. As 
a consequence, many unnecessary thread scheduling choices may be created during the state space traversal, if the POR 
technique determines imprecisely that the execution of some instruction may be globally-relevant when it is actually thread 
local.

In addition to many more thread interleavings that must be explored, there is another reason why performance of JPF 
suffers due to unnecessary scheduling choices created during the state space traversal. At every thread scheduling choice, 
JPF performs garbage collection, serializes the current program state, and performs state matching to determine whether 
the state has already been encountered. These are expensive operations — they may take up to half of the running time of 
JPF [34]. Thus excessive thread scheduling choices significantly increase the running time of JPF.

Considering only accesses to fields of heap objects, a solution used by the POR technique in JPF is to consider a field 
access on a heap object as possibly globally-relevant if the object is reachable from multiple threads via a chain of references 
(pointers) in the given program state. It performs the dynamic escape analysis proposed in [13] to determine whether a 
heap object is reachable from multiple threads. Note that some of the threads may not actually access the object during 
the program execution. For example, execution of an instruction may be considered globally relevant because it writes to a 
field of an object reachable from other threads, but if no other thread will ever access that field, then the thread scheduling 
choice at the field write is not necessary. This strategy used to identify thread-local field accesses is imprecise for two 
reasons. First, the strategy conservatively assumes that every object that is reachable from multiple threads in the current 
dynamic heap will actually be accessed by those threads in the future. Second, the strategy does not distinguish individual 
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