
Science of Computer Programming 98 (2015) 764–784

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

A perspective on architectural re-engineering

Alejandro Sanchez a,b, Nuno Oliveira b, Luis S. Barbosa b,˚, Pedro Henriques c

a Universidad Nacional de San Luis, San Luis, Argentina
b HASLab – INESC TEC & Universidade do Minho, Braga, Portugal
c CCTC, Universidade do Minho, Braga, Portugal

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 March 2012
Received in revised form 16 February 2014
Accepted 17 February 2014
Available online 18 March 2014

Keywords:
Software architecture
Coordination patterns
Re-engineering

Continuous evolution towards very large, heterogeneous, highly dynamic computing
systems entails the need for sound and flexible approaches to deal with system modifica-
tion and re-engineering. The approach proposed in this paper combines an analysis stage,
to identify concrete patterns of interaction in legacy code, with an iterative re-engineering
process at a higher level of abstraction. Both stages are supported by the tools CoordPat
and Archery, respectively. Bi-directional model transformations connecting code level and
design level architectural models are defined. The approach is demonstrated in a (fragment
of a) case study.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Legacy software has to be maintained, improved, replaced, adapted and regularly assessed for quality, which brings their
re-engineering to the top of concerns of the working software architect. This is not, however, an easy task. On the one
hand a systems’ architecture relies more and more on non-trivial coordination logic for combining autonomous services and
components, often running on different platforms. On the other hand, often such a coordination layer is strongly weaved
within the application at the source code level.

The CoordInspector tool [1,2] was a first attempt to address this problem by systematically inspecting code in order to
isolate the coordination threads from the computational layer. This is done in a semi-automatic way through the combina-
tion of generalised slicing techniques and graph manipulation.

Such a stage of architectural discovery constitutes a necessary, but not sufficient step in a re-engineering process. Actually,
experience shows that

• recovering an architectural model from code would be much more effective if driven by some notion of pattern encoding
typical interactions;

• in any case, the low level model produced through slicing and code analysis, needs to be mapped to a more structural
one, to precisely abstract and identify components and connectors and enable their re-engineering.

This paper, combining previous research on both program understanding and software architecture, addresses the challenge
as follows:

• First of all it introduces a notion of a coordination pattern directly extracted from the program dependency graph of the
legacy system, as well as a language, CoordL, to describe such patterns. A collection of coordination patterns constitutes

* Corresponding author.

http://dx.doi.org/10.1016/j.scico.2014.02.026
0167-6423/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2014.02.026
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
http://dx.doi.org/10.1016/j.scico.2014.02.026
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2014.02.026&domain=pdf


A. Sanchez et al. / Science of Computer Programming 98 (2015) 764–784 765

Fig. 1. An approach to architectural re-engineering.

a low level architectural description in terms of execution threads and interaction points. Its main purpose is to act as
a template to inspect code and represent its coordination layer. CoordPat, a pattern search facility based on this idea,
was combined with CoordInspector to enhance the tool support for the technique.

• Then a systematic method is proposed to translate such patterns into a high-level architectural model in Archery [3]
which provides a proper setting for studying and simulating architectural changes. This iterative process is illustrated in
Fig. 1 through the loop arrow from the Archery model.

• Finally, a reverse translation method is proposed to transform the new architectural model back to a collection of
coordination patterns which guides the re-implementation process.

Fig. 1 sums up the proposed approach for architectural re-engineering. The combination of CoordPat and Archery equips
the architect with suitable tool-support for recovering architectural decisions, reconstructing an architectural model, and
analysing the impact of different possible modifications. Since the two frameworks work at different abstraction levels, (the
first providing abstractions over dependency graphs; the second entailing a components-and-connectors view of architectural
organisation), ‘translations’ A and C in Fig. 1 are central to the proposed method. Their application is illustrated in detail
through an example, extracted from a real case study.

A main motivation for this work is the problem of quality assessment and re-engineering of Open Source Software (OSS)
as discussed in [4]. Availability of code makes OSS particularly suited to application of backward analysis and program
understanding techniques [5]. Often architectural decisions are only partially documented in OSS due to the pay-as-you-go
documentation style and the distributed and heterogeneous nature of its development. Architectural re-engineering plays
nevertheless a main role in OSS maintenance and evolution: it is particularly critical to endow OSS communities with
techniques and tools to identify and to control architectural drift, i.e., the accumulation of architectural inconsistencies
resulting from successive code modifications, that may affect different quality attributes of the system.

The paper is organised as follows: Section 2 describes the approach and the example we use to illustrate it; Sections 3
and 4 introduce, respectively, CoordPat and Archery, the two main methods/tools in this process; Section 5 describes the
systematic translations of CoordL to Archery models and back; Section 6 illustrates the approach through a detailed example;
finally, Section 7 reports on related work and concludes.

2. An approach to architectural re-engineering

The approach proposed in this paper for architectural re-engineering of legacy code is depicted in Fig. 1. As explained
above, it resorts to the combination of a tool for extracting coordination patterns from source code (CoordPat) and a high
level architectural description language (Archery) plus a guide to map patterns back and forth between these two levels.

The example chosen to illustrate the approach is part of a real case study on software integration described in [2].
It concerns a service to control the updating of user profiles and information common to a number of components of a
company’s information system. In its original formulation the context is that of a company offering professional training
through e-learning courses. The information system comprises the following three main components: an Enterprise Re-
source Planner (ERP) for controlling expenses and profits; a Customer Relationship Management (CRM) for managing both
general and customer-focused course campaigns; and a Training Server (TS) for managing the courses. These components
worked almost independently, all information being shared by a set of scripts executed manually, which gave rise to fre-
quent synchronisation problems. The decision to perform a global architectural analysis and reconstruction was pushed by
a sudden growth in the company market share and the need for introducing a web portal for on-line sales.

CoordPat is first applied in the re-engineering process. The tool aims at uncovering, registering and classifying architec-
tural decisions often left undocumented and hardwired in the source code. It implements a rigorous method [6] to extract
the architectural layer which captures the system behaviour with respect to its network of interactions. This is often referred
to as the coordination layer, a term borrowed from research on coordination models and languages [7] which emerged in the
nineties to exploit the full potential of parallel systems, concurrency and cooperation of heterogeneous, loosely-coupled
components.

The extraction stage combines suitable slicing techniques to build a family of dependency graphs by pruning a system
dependency graph [8] first derived from source code. After the extraction stage, the tool exploits such graphs to identify and
combine instances of coordination patterns and then reconstruct the original specification of the system coordination layer.
CoordPat maintains an incrementally-built repository of patterns to guide the analysis process.



Download English Version:

https://daneshyari.com/en/article/434953

Download Persian Version:

https://daneshyari.com/article/434953

Daneshyari.com

https://daneshyari.com/en/article/434953
https://daneshyari.com/article/434953
https://daneshyari.com

