

Available online at www.sciencedirect.com

Neuroscience Letters

Neuroscience Letters 419 (2007) 247-252

www.elsevier.com/locate/neulet

Protective effects of A β -derived tripeptide, A β_{32-34} , on A β_{1-42} -induced phosphatidylinositol 4-kinase inhibition and neurotoxicity

Zheng-Mei Xiong^{a,c}, Kaori Kitagawa^{a,*}, Yuji Nishiuchi^b, Terutoshi Kimura^b, Chiyoko Inagaki^a

^a Department of Pharmacology, Kansai Medical University, Fumizono-cho 10-15, Moriguchi, Osaka 570-8506, Japan ^b Peptide Institute, Inc., Saito-asagi 7-2-9, Ibaraki, Osaka 567-0085, Japan

^c Department of Pharmacology, Guiyang Medical College, Guiyang 550004, China

Received 16 January 2007; received in revised form 10 April 2007; accepted 10 April 2007

Abstract

We previously reported that the neurotoxicity of pathophysiological concentrations of amyloid β proteins (A β s, 0.1–10 nM) as assessed by the inhibition of type II phosphatidylinositol 4-kinase (PI4KII) activity and the enhancement of glutamate toxicity was blocked by a short fragment of A β , A β_{31-35} . Such protective effects of shorter fragments derived from A β_{31-35} were examined in this study to reach the shortest effective peptide, using recombinant human PI4KII and primary cultured rat hippocampal neurons. Among the peptides tested (A β_{31-34} , A β_{31-33} , A β_{31-35} , A β_{32-34} , A β_{32-34} , A β_{32-33}), A β_{31-34} , A β_{32-35} and A β_{32-34} blocked both the A β_{1-42} -induced inhibition of PI4KII activity and enhancement of glutamate toxicity on cell viability. The shortest peptide among them, A β_{32-34} , showed a dose-dependent protective effects with 50% effective concentration near 1 nM, while A β_{34-32} , with a reverse amino acid sequence for A β_{32-34} , showed no protective effects. Thus, a tripeptide, A β_{32-34} i.e. Ile–Gly–Leu, may be available as a lead compound for designing effective A β antagonists. © 2007 Elsevier Ireland Ltd. All rights reserved.

Keywords: Type II phosphatidylinositol 4-kinase; Amyloid β protein; Tripeptide (Ile–Gly–Leu); Glutamate toxicity; Alzheimer's disease

Amyloid β proteins (A β s) are pathogenic peptides of Alzheimer's disease (AD), strategies for blocking their toxicity being long searched based on their toxic mechanisms without successful efficacy in human trials [7]. Although relatively high concentrations (>10 μ M) of ABs have been used to analyse their toxicity in previous reports [11,18], pathophysiological concentrations (≤ 10 nM) of ABs were demonstrated in our laboratory to induce the enhancement of glutamate toxicity [21-23], resulting in neuronal cell death via the inhibition of type II phosphatidylinositol 4-kinase (PI4KII) activity [20,21], raising a possibility that reagents blocking such effects of ABs yield candidates for new therapeutics for AD. Most recently, we found that $A\beta_{31-35}$ and A β_{20-29} peptides with partial amino acid sequences of toxic $A\beta_{1-42}$ or $A\beta_{25-35}$ peptides recovered such $A\beta$ -induced inhibition of PI4KII activity and enhancement of glutamate toxicity, showing that a peptide as short as $A\beta_{31-35}$ is effective to protect the toxic effects of pathophysiological concentrations of ABs

0304-3940/\$ - see front matter © 2007 Elsevier Ireland Ltd. All rights reserved. doi:10.1016/j.neulet.2007.04.022

[21]. In the present study, we tried to determine the A β_{31-35} derived shortest peptide fragment interfering with A β s' effects. Nine shorter peptides with 2–4 amino acid residues derived from A β_{31-35} were synthesized and applied to examine their effects on A β_{1-42} -induced inhibition of recombinant human type II α phosphatidylinositol 4-kinase α (PI4KII α) activity and enhancement of glutamate toxicity in primary cultured rat hippocampal neurons.

A β_{1-42} , A β_{31-35} and nine A β_{31-35} -derived short peptides (A β_{31-34} , A β_{31-33} , A β_{31-32} , A β_{32-35} , A β_{33-35} , A β_{34-35} , A β_{32-34} , A β_{33-34} and A β_{32-33}), as well as A β_{34-32} with a reverse sequence of A β_{32-34} , were synthesized in Peptide Institute, Inc., Osaka, Japan. A β_{1-42} was synthesized by the solution procedure as reported previously [10]. A β short peptides were synthesized with an automatic peptide synthesizer, ABI 433A (Foster City, CA, USA), employing 9-fluoremethoxycarbonyl (Fmoc) chemistry on Wang resin. Stock solutions of A β_{1-42} and A β short peptides were prepared by dissolving in 10% dimethylsulfoxide at 20 μ M and aliquoted before freezing at -80 °C. These peptides were applied to PI4KII assay or culture medium immediately after dilution of the stock

^{*} Corresponding author. Tel.: +81 66993 9428; fax: +81 66992 2940. *E-mail address:* kitagawa@takii.kmu.ac.jp (K. Kitagawa).

solution with distilled water without incubation for peptide aggregation.

Recombinant human type II phosphatidylinositol 4-kinasea was prepared by transfection of the plasmid (pGEX-KG) containing the open reading frame of human type II PI4Ka (PI4KIIa) in Escherichia coli DH5a competent cells (Toyobo, Osaka, Japan) as described previously [20]. Type II phosphatidylinositol 4-kinase activity was measured by phosphorylation of exogenous L-a-phosphatidylinositol (PI, Nacalai Tesque, Kyoto, Japan) using $10 \text{ mCi/mmol} [\gamma^{-32}P]$ ATP (Amersham Biosciences, Piscataway, NJ, USA) as a phosphate donor [3]. Briefly, recombinant PI4KIIa bound to glutathione-sepharose 4B (Amersham Pharmacia Biotech, Uppsala, Sweden) was pre-incubated with or without $A\beta_{1-42}$ in the presence or absence of different short peptides for 30 min at room temperature, and then with 150 µM PI for 5 min at room temperature in 50 µL reaction buffer containing 20 mM Tris, pH 7.5, 100 g/L glycerol, 0.1 M NaCl, 10 g/L Triton X-100, 1 mM dithiothreitol and protease inhibitors set (Roche Diagnostics GmbH, Mannheim, Germany). Reactions were initiated by the addition of $[\gamma^{-32}P]$ ATP and MgCl₂ at final concentrations of 0.1 mM and 15 mM, respectively, carried out at 37 °C for 10 min and then terminated by the addition of four volumes of chloroform/methanol/HCl (20:40:1, v/v) followed by the addition of one volume each of chloroform and 0.2 M KCl to extract phospholipids. Extraction and development of phospholipids were performed as described by Andrews and Conn [1]. Labeled PIP was detected by autoradiography at -80 °C using Kodak X-Omat AR film followed by densitometry using a color scanner and a public domain image processing and analysis program (NIH IMAGE; National Institute of Mental Health, Bethesda, MD, USA). Labeled PIP was regarded as a product of kinase activity.

Primary culture of rat hippocampal neurons was prepared as described previously [22]. The animal treatment and experimental procedures were all based on the Guidelines for Animal Care and Use Committee at Kansai Medical University. Hippocampal tissues removed from the brains of 19-day-old Wistar rat embryos were triturated in Ca²⁺- and Mg²⁺-free Hank's solution. The cells were suspended in Dulbecco's modified Eagle's medium supplemented with 4 mM L-glutamine, 100 IU/mL penicillin G sulfate, 10% fetal calf serum and 10% horse serum, and then seeded in poly-L-lysine-coated plastic dishes at a density of 2.55×10^5 cells/cm². After incubation for 2 days, the cells were exposed to 5 µM adenine-9B-arabinofuranoside (Ara-A) in modified Eagle's medium (MEM) supplemented with 2 mM L-glutamine and 5% horse serum for 4 days. A β_{1-42} and/or short peptides were applied for 2 days from the 8th day of culture. For monitoring glutamate excitotoxicity, the cells were exposed to glutamate $(10 \,\mu M)$, 10 min, in serum-free MEM) on the 10th day of culture and assayed for cell viability after another 2-day culture in the same media as used during the 8-10 days of culture. Cell viability was assayed by measuring 2-(2-methoxy-4-nitrophenyl)-3-(4-nitro-phenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium monosodium salt (WST-8) reduction reflecting mitochondrial activity using a Cell Counting Kit-8 (Dojindo, Tokyo, Japan) and lactate dehydrogenase (LDH) release from damaged plasma membranes using an LDH-Cytotoxic Test (Wako, Osaka, Japan). Cl⁻-ATPase activity was measured

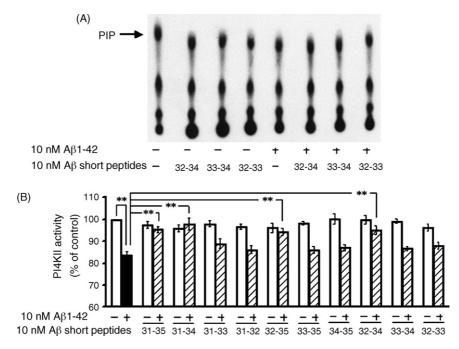


Fig. 1. Effects of A β short peptide derived from A β_{31-35} on the A β_{1-42} -induced inhibition of recombinant human PI4KII α activity. PI4KII α was prepared freshly and was pre-incubated with or without A β_{1-42} in the presence or absence of different short peptides for 30 min at room temperature. The kinase activity assay was initiated by the addition of [γ -³²P] ATP and MgCl₂ at 37 °C for 10 min, then terminated by the addition of four volumes of chloroform/methanol/HCl (20:40:1, v/v). (A) Typical spots of phosphatidylinositol monophosphate (PIP) as products of PI4KII activities. (B) Summary of the effects of nine A β short peptides as well as A β_{31-35} , (**) $p \le 0.01$, n = 4-5. Each bar represents the mean \pm S.E.M.

Download English Version:

https://daneshyari.com/en/article/4349619

Download Persian Version:

https://daneshyari.com/article/4349619

Daneshyari.com