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A joint-centred model accounts for movement curvature
and spatial variability
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Abstract

Hand reaching toward a visual target needs the central nervous system (CNS) to encode target location and initial limb posture. Once these
sensory inputs are encoded within a common frame of reference, the motor system builds a motor command to drive the limb towards the target.
In order to face the controversy concerning the variables (in task-space versus joint-space) the motor system may manipulate to build a motor
command, we propose to compare recorded hand pointing movements to a task-space vector model and to a simplified joint-centred model. Subjects
repeated large 3D free movements toward 12 different targets lying on a pointing table. Corresponding endpoint confidence ellipses were then
computed. The main directions of these ellipses were finally compared to those predicted by the two models. The present work differs from earlier
related studies in the fundamental approach data were recorded. Indeed, we put our emphasis on isolating the motor planning component from other
online sensorimotor processes and higher level cognitive processes. In particular, we did not impose cognitively controlled movement features
such as movement shape or planar constraint. Furthermore, a precise control of online feedbacks allowed us dissociating motor planning from
online feedback processing. The obtained data better fitted the joint-centred model than the task-space vector model. Moreover, the recorded data
exhibited curved trajectories very similar to the simulated values obtained from the joint-centred model.
© 2006 Elsevier Ireland Ltd. All rights reserved.
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In a hand reaching task, the target location needs to be encoded
according to various input signals such as retinal eccentricity,
eye-in-head posture, head-on-trunk posture. Then the central
nervous system (CNS) encodes both target and hand in a com-
mon frame of reference. At that level, the motor system builds a
motor command devoted to move the limb toward the target. The
question we address focuses on the potential variables the motor
system may manipulate to build this motor command. Organi-
sation of motor commands while pointing to a visual target for
instance, has often been argued to depend on a separate and
independent control of two main motor variables: movement
direction and movement amplitude. The original idea comes
from an approach of motor control developed by Morasso [21],
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Abend et al. [1], Flash and Hogan [11], which tries to find a
law minimizing the jerk of an endpoint movement trajectory
in cartesian coordinates and thus leads to a linear trajectory
in task space. This view has received a strong electrophysio-
logical support when it has been discovered within the motor
cortex individual cells and population vector cells aligned along
the movement direction. It has been suggested that movement
direction, i.e. the line connecting movement starting point to
movement endpoint, is the main neural variable [12,14,20]. This
view has been strengthened by the observation that small ampli-
tude movements appear roughly straight, so that they can be
easily described as vectors. Such a splitting of motor variables
in direction of movement and its amplitude has been called the
vector coding hypothesis by Vindras and Viviani [36].

Although there are frequent and recurrent controversies in
the literature [2,6,22,31–33] recent studies continue to sup-
port this view [4,19,24,37]. However, a careful analysis of the
methodologies reveals that all the studies supporting the vec-
tor coding hypothesis are based on movements planned in a
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single plane. Actually, in most of the pre-cited experiments in
humans, subjects had to point to a target using a tool (stylus,
mouse). This 2D constraint and the straight feature of movement
paths may be derived from cognitively imposed skills. So, the
measured features of movements in these studies could reflect
the way higher brain variables such as symbolic representations
interfere with the motor system [6,7], rather than the natural
motor variables.

In the present study, we propose to retest the vector cod-
ing hypothesis and a joint-centred model in free movements,
i.e. without any need to represent a tool to use and its limita-
tions. These movements are also 3D free in order not to impose
a straight line representation potentially elicited in a 2D task.
Furthermore, the procedure removes all visual feedback (i.e.
both hand and target disappear during movement execution), so
that no online visual feedback loop can interfere with a motor
command [13,23,27,26]. In a first step, the main directions of
observed endpoint confident ellipses are compared to those pre-
dicted by the vector coding hypothesis. In a second step, the
same main directions of observed endpoint variability ellipses
are compared to those predicted by the joint-centred model.
In general, a perceptual noise (except for visual depth percep-
tion) is considered as isotropic [35], and can influence the shape
(or the size) of the endpoint confident ellipse, but not its ori-
entation which is more specifically determined by the motor
command noise. Comparing the data with the two models pre-
dictions should allow to infer the way raw motor commands are
generated in the control of reaching movements.

Fourteen right handed healthy subjects with normal vision
participated in the experiment. Their mean age was 34.5 ± 1.19
(mean ± S.E.) and all gave their informed consent. The exper-
iment was conducted in accordance with the Declaration of
Helsinki and under the terms of local legislation.

Subjects simply had to perform right hand pointing move-
ments to visual targets. Their head and chest were fixed. The
pointing table was tilted 17.5◦ for subjects’ comfort, and for
movements to be planned as naturally as possible. Before each
trial, a fixation LED appeared in front of the subjects. The start-
ing point, near from subjects’ chest, was materialized by a tactile
cue on the table. The limb was fully visible prior to movements
for a better accurate motor planning [25]. Then, a peripheral tar-
get appeared in the right visual field. In order to respect natural
eye–hand coordination, subjects had to synchronously initiate
an orienting saccade and point to this target.

The task was performed in a completely dark room. Targets
appeared at 12 locations along a 3-by-4 regularly spaced array
covering the entire reaching space. Extreme (X, Y) target coor-
dinates (cm) were (17.7, 13.5) and (40.8, 28.9) in a cartesian
reference frame originated at hand starting point. Each subject
performed 10 blocks of 12 movements each. The 12 targets in a
block were randomly presented. Although not reaching biome-
chanical limitations, movement amplitudes were large enough to
clearly differentiate curved from straight movements by contrast
with other studies [2,6,22,24,31–33,36,37].

Real-time control of the presented stimuli allowed switching
off the peripheral target at eye saccade onset, and switching off
limb vision at limb movement onset. This “double open loop”

condition was used to completely preclude the online feedback
processing evidenced in earlier studies [5,15,23,26]. Thus, anal-
ysis of motor planning variables remained unbiased.

During this very simple task, limb and eye movements were
monitored online to allow real-time control of visual feed-
backs. 3D limb movements were recorded using an OPTO-
TRAK (3020) camera at a 200 Hz sampling rate. Limb data were
recorded for further analysis. The OPTOTRAK infrared LED
was placed on the subjects’ fingertip. Horizontal gaze direc-
tion was recorded using a calibrated DC EOG method [26] at
a 1000 Hz sampling rate. These signals were used in real-time
to control target LEDs and limb vision via an AD-WIN system
(Keithley-Metrabyte).

Online detection of saccade onset was determined by an eye
velocity threshold using a two-point central difference algo-
rithm [3] with a 10 ms binwidth. This threshold was individually
adjusted at one-third of the maximum eye velocity observed dur-
ing calibration. Online detection of hand pointing movement
onset was determined by a fixed 80 mm/s velocity threshold
using the same method as for the eye (10 ms binwidth).

Only 2D limb movement projections on the pointing table
were analysed to allow a comparison with simplified 2D mod-
els. The present study particularly emphasises the direction of
endpoint variability ellipses of hand pointing movements. Data
from the 14 subjects were normalized and pooled; this way we
obtained 140 movements toward each target. For each target, a
confidence ellipse of movement endpoints was drawn, and its
main direction was determined. These results were compared to
those obtained from the simulations.

Considering the vector coding hypothesis, for each target we
predict that the directions of endpoint confident ellipses will be
aligned with the average movement direction [14].

Considering a joint-centred hypothesis for motor planning,
we compute the final posture of the hand through an inverse
kinematics transform. Then, trajectory is derived from a linear
co-variation of the two angular joint displacements during move-
ment execution, i.e. the movement is considered as a straight line
in joint coordinates. For each simulated trial we add an inde-
pendent random noise on both joints. As movement variability
increases as a function of movement length [29], the shoulder
and elbow noises are introduced as a dynamic component, i.e.
proportional to displacements in the corresponding joints. We
also include a 1◦ gaussian static noise component at each joint
to represent the noise in stabilizing a joint that does not have to
displace. The levels of both shoulder and elbow dynamic noises
are adjusted to get the closest trade-off between a null offset and
a unity slope of the regression equation between recorded and
predicted directions of variability ellipses. The shoulder location
in the model is computed as the 2D projection of the mean shoul-
der location measured on subjects during experiments. The arm
and forearm (including hand and finger) lengths in the model
are computed as the 2D projection of the mean arm and forearm
lengths measured on subjects.

For each model, the 12 predicted directions (for the 12 tar-
gets) are compared to those from the recorded data in a simple
regression analysis. We expect a regression equation of Y = X for
a perfect model, where X and Y are, respectively, the direction of
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