
Science of Computer Programming 94 (2014) 109–129

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

ASM, controller synthesis, and complete refinement

Richard Banach a,∗,1, Huibiao Zhu b,2, Wen Su c,3, Xiaofeng Wu b

a School of Computer Science, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
b Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, 3663 Zhongshan Road North, Shanghai 200062, PR China
c School of Computer Engineering and Science, Shanghai University, Shanghai, PR China

h i g h l i g h t s

• Decomposing controller and plant from a unified model.
• ASM scheduling policy.
• Continuous ASM.
• Chopsticks case study.

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 January 2013
Received in revised form 23 April 2014
Accepted 24 April 2014
Available online 6 May 2014

Keywords:
ASM
Controller
Complete refinement
Continuous ASM
Chopsticks

While many systems are naturally viewed as the interaction between a controller
subsystem and a controlled, or plant subsystem, they are often most easily initially
understood and designed monolithically, simply as a collection of variables that represent
various aspects of the system, which interact in the most self-evident way. A practical
implementation needs to separate controller from plant though. We study the problem of
when a monolithic ASM system can be split into controller and plant subsystems along
syntactic lines derived from variables’ natural affiliations. We give restrictions that enable
the split to be carried out cleanly, and we give conditions that ensure that the resulting
pair of controller and plant subsystems have the same behaviours as the original design.
We relate this phenomenon to the concept of complete refinement in ASM. Making this
strategy work effectively, usually requires a nontrivial domain theory, into which a number
of properties which are neither the sole possession of the controller subsystem nor of
the plant subsystem must be placed. We argue that these properties are latent in the
original monolithic model. We illustrate the theory with a case study concerning eating
with chopsticks. This leads to an extension of controller synthesis for continuous ASM
systems, which are briefly covered. The chopsticks case study is then extended into the
continuous sphere.

© 2014 Elsevier B.V. All rights reserved.

* Corresponding author.
E-mail addresses: banach@cs.man.ac.uk (R. Banach), hbzhu@sei.ecnu.edu.cn (H. Zhu), wsu@shu.edu.cn (W. Su), xfwu@sei.ecnu.edu.cn (X. Wu).

1 A large portion of the work reported in this paper was done while the first author was a visiting researcher at the Shanghai Key Laboratory of
Trustworthy Computing at East China Normal University. The support of ECNU is gratefully acknowledged.

2 Huibiao Zhu is supported by National High Technology Research and Development Program of China (No. 2012AA011205), National Natural Science
Foundation of China (No. 61361136002 and No. 61321064), Shanghai Knowledge Service Platform Project (No. ZF1213) and Shanghai Minhang Talent
Project.

3 Wen Su was supported in part by the Open Project of the Shanghai Key Laboratory of Trustworthy Computing (No. 07dz22304201303).

http://dx.doi.org/10.1016/j.scico.2014.04.013
0167-6423/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2014.04.013
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:banach@cs.man.ac.uk
mailto:hbzhu@sei.ecnu.edu.cn
mailto:wsu@shu.edu.cn
mailto:xfwu@sei.ecnu.edu.cn
http://dx.doi.org/10.1016/j.scico.2014.04.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2014.04.013&domain=pdf


110 R. Banach et al. / Science of Computer Programming 94 (2014) 109–129

1. Introduction

Today, when one considers the ubiquity of embedded controllers, which take on the digital role in the interaction of
a digital and an external system, it becomes clear that many systems are naturally viewed as the interaction between
a controller subsystem and a controlled, or plant subsystem. Regarding the high level design of such systems, the fact that
the ultimate design needs to be split into controller and plant subsystems is evident from the outset. However, it is often
easier in the earlier stages of design to ignore that fact, and to focus exclusively on the overall system goals. This means
postponing for the time being the issue of how the solution arrived at is to be organised into the two subsystems. Such
a monolithic approach means that there is simply less to worry about in the earlier stages of design, when there is the most
uncertainty concerning the most critical aspects of the problem. This allows the bulk of this early design activity to focus
on the overall goals rather than lower level technical detail.

However, a practical implementation needs to separate the controller from the plant, since it is the controller which
behaves according to a human-created digital design, and the plant behaves according to patterns determined by the laws of
nature. In this paper we study the problem of when a monolithic ASM system design, embodying this dual controller/plant
nature, can be split into separate controller and plant subsystems. This is to be done along generic syntactic lines derived
from the most natural associations of the system variables to one or other (controller or plant) subsystem. The approach
generalises a specific case study in which this task arose and where it was tackled rather informally [2]. We find that the
success of the generic approach to such a goal requires that the monolithic design satisfies some simple criteria ab initio. As
well as studying the problem from an abstract viewpoint, we present some examples.

In more detail, the rest of the paper is as follows. Section 2 describes the controller synthesis problem in abstract terms,
focusing on the specific way that controller and plant are to be separated. A sufficient condition for the success of the
desired controller/plant separation is formulated and proved. The undecidability of controller synthesis is also discussed in
Section 2.1 by reduction to the Halting Problem. In Section 3 we consider a straightforward computable approximation to the
controller synthesis problem, and argue that it is adequate for practical purposes. Section 4 discusses the role of the domain
theory in the formulation of the controller synthesis problem — in many cases, the rules governing the behaviour of the
system overall, can be viewed as belonging neither entirely to the controller subsystem nor entirely to the plant subsystem.
Section 5 relates the preceding material to the ASM concept of complete refinement. When the controller synthesis problem
is resolved successfully, each version of the overall system description refines the other. Section 6 introduces an example
based on the idea of picking up food with chopsticks, viewed as a control problem. Section 7 extrapolates the preceding
ideas to the case of continuous ASM, in which smoothly changing (as well as discretely changing) behaviours are admitted.
Section 8 extends the discussion of the chopsticks case study by taking on board the continuous notions. In Section 9, we
loosen the tight synchronisation between controller and plant, evident in the account so far, to create a slightly more liberal
framework for the continuous case. Section 10 concludes.

2. The controller synthesis problem

We consider a generic ASM system consisting of basic ASM rules using straightforward single variable locations and
a simple element of nondeterminism. Following [6], for our purposes, such a rule can be written as:

Op(pars) =
if guard(xs,pars) then choose xs′ with rel

(
xs′, xs,pars

)
do xs := xs′ (1)

In (1), pars are the input parameters (as needed) and xs are the variables modified by the rule. The rule’s guard is guard,
and rel represents the relationship that is to hold between the parameters, the before-values of the variables xs, and their
after-values referred to as xs′ , when the rule fires. As usual, in a single step of a run of the system, all rules which are
enabled (i.e. whose guards are true) fire simultaneously, provided that the totality of updates defined thereby is consistent,
else the run aborts.

In this paper we are interested in control applications, and we envisage the design done in a monolithic way at the
outset, addressing system-wide design goals before plunging into the details of subsystem design. Thus the design may start
by being expressed using system-wide variables. However, by a process of gradual refinement, the collection of variables
will eventually end up such that each variable can be identified as belonging to either the controller-subsystem-to-be, or the
plant-subsystem-to-be. Despite this prospective partition of the variables though, a typical legacy of the top-down design
process will be that many, or even all, of the rules of the system description will still involve variables of both kinds.

The controller synthesis problem is the problem of taking such a collection of rules (call it Sys), and separating it into
one set of rules for the controller (call it Con) and another set for the plant (call it Pla), such that each subsystem of rules
reads only the variables accessible to it, and each modifies only the variables that it owns. Moreover, this is to be done in
such a way that the combination of the rules in Con and Pla generates the same behaviour (i.e. the same set of runs) as the
original ruleset Sys.

Note that in [6], the importance of distinguishing controlled functions from monitored ones is firmly stressed, in one
sense solving the controller synthesis problem right at the outset, since the distinction already separates the controller from
the plant. Our perspective is different however, since it permits this aspect to be postponed for an initial portion of the



Download English Version:

https://daneshyari.com/en/article/435043

Download Persian Version:

https://daneshyari.com/article/435043

Daneshyari.com

https://daneshyari.com/en/article/435043
https://daneshyari.com/article/435043
https://daneshyari.com

