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Fractality of dendritic arborization of spinal cord neurons
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Abstract

Skeletonized images of Golgi impregnated neurons from the human, monkey, cat and rat dorsal horns were subjected to fractal analysis.
These neurons have sparse branching of dendrite arbors. It is noticed that, in certain neuronal samples, some authors report that scaling range of
experimentally declared fractals is extremely limited and spanned approximately between 0.5 and 2.0 decades. In order to retain our hypothesis
that neurons with dendrites of uncomplicated shapes can be considered fractal over three decades of scale, we conducted four procedures: (i) we
used the box-counting method, (ii) we scaled the box sizes as a power of 2, (iii) we chose the coefficient of correlation, measuring the “goodness
of fit” of experimental data points to regression straight line, to be equal to or larger than 0.995, and (iv) we pointed out that all the neurons
analyzed have a single fractal dimension measuring a global fractality showing no linear regions. As a control, we used some cerebellar Purkinje
cells whose dendrite trees show much more complex structure and profuseness of branching. Since, generally, the neuronal structure is among the
most complex of all cellular morphologies, we believe that supporting this hypothesis we advance the neuroscience and fractal theory.
© 2005 Elsevier Ireland Ltd. All rights reserved.
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Fractal geometry, as a contemporary branch of pure and applied
mathematics and the basis of all fractal ideas, is developed as a
new geometry of nature [11]. Mandelbrot established this geom-
etry to describe the complexity of forms and processes found in
nature [1,11]. In fractal geometry, a fractal should be compre-
hended as a basic (most general) concept, that is, as a theoretical
abstraction that cannot be defined analytically. Two types of
fractals are being used in quite different fields: mathematical
(geometric) and statistical (natural, empirical) fractals. Mathe-
matical fractals are mathematical constructions characterized by
never-ending cascades of similar structural details [11]. Natural
fractals are more restricted than are mathematical ones. Fractal
objects in space possess two important properties: self-similarity
and scaling. An object is geometrically self-similar if its pieces
are exact duplication of the whole object [11]. On the other
hand, if a property is measured on a piece of a naturally occur-
ring object at high resolution, the object is said to be statistically
self-similar if the small portions of the object, when magnified,
resemble qualitatively the whole. This resemblance means that,
for instance, the part fills space in the same way as the whole. The
pieces of natural objects are rarely exact reduced copies of the
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whole object. Statistical self-similarity implies that the property
being measured depends on the size (or resolution) of the scale
used to do the measurement. Thus the property scales with the
measurement used to measure it. For instance, a scale-dependent
measure of a space-filling object can be chosen as the number of
boxes in a square grid. The number of boxes intersected by the
whole object is counted and the procedure is repeated at finer
scales (smaller boxes). The self-similarity and scaling can be
quantitatively estimated by the fractal dimension D. This mea-
sure describes the complexity of form and space-filling property
of an object.

The rule showing how the measured value depends on the
resolution of measurement is called the scaling relationship. The
simplest scaling relationship determined by self-similarity of an
object is given by power law scaling [1]

P(r) = Brα(D) (1)

where P is a measured property of the object (such as, length,
area, or volume), B a factor for the power law scaling, r the scale
(resolution) at which it is measured, and α(D) is the scaling expo-
nent, representing a simple function of the fractal dimension D
of the object. This function depends of the Euclidean dimen-
sion E of the object embedded in space and is accepted to be
α(D) = E − D. Taking the logarithms of both sides of Eq. (1)

0304-3940/$ – see front matter © 2005 Elsevier Ireland Ltd. All rights reserved.
doi:10.1016/j.neulet.2005.11.031
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yields

log P(r) = α(D) log r + log B (2)

Thus, power law scaling is revealed as a straight line when the
logarithm of the measured property P is plotted against the log-
arithm of the scale r at which it is measured.

While a mathematical fractal requires infinite orders of mag-
nitude of power-law scaling and therefore is fractal over all
scales, physical, biological and other structures in nature have
a finite number of decades between a high and a low cut-off
scale. The scaling ranges of experimentally declared fractals
are limited, often to five decades or more [11]. Neuroscience
shows an even more negative situation. Biological patterns span
over a relatively small scaling range, mainly between 0.5 and
2 decades. Panico and Sterling [13] claimed that these patterns
could be considered fractals over at most half a decade of a scale.
Caserta et al. [3] considered that any natural fractal should be
fractal over at least one decade. Smith et al. [17] found that the
slope of the regression straight line is constant over about two
decades of magnitude. Takeda et al. [19] reported that obtained
regression lines show a very good fit over less that one decade.
Fernández and Jelinek [5] pointed out that the actual data points
are generally not laid over a straight line for more than one or
two decades. They concluded that biological data having a linear
fit of more than two orders of magnitude is extremely rare. Such
short intervals of linearity in natural fractals represent additional
difficulties in determining linearity and fractal character.

The range of the linear slope of the log–log plots indicates
the range of self-similarity [17,18]. If the log–log plot has a
linear region, the pattern is said to be fractal only over that
range of scale [13]. In all practical measurements the issue to
be addressed is the “goodness” of straight line fit and is usu-
ally decided according to some statistical criteria (e.g., by the
coefficient of correlation between the data and a straight line
model based on, for instance, the least-square method) [18]. But
deciding how well the regression line fits the points was arbitrary
[13]. For instance, Takeda et al. [19] used R > 0.999 for such cri-
terion, Jelinek and Fernández [9] used R > 0.998. We have used
the value 0.995 [12]. A discriminating method for finding the
linear region of the log–log plots is rarely proposed [13]. Con-
sidering everything, it has been adopted by most of the authors
that this range is between 0.990 and 0.999.

The aim of the present report is to show that using suitable
neurological material, corresponding procedure of measurement
and image processing, the interval of self-similarity of the neu-
robiological patterns can be extended over three orders of mag-
nitude.

The images of Golgi impregnated neurons of human and rat
spinal cords were obtained as reported in our previously pub-
lished article [12], and those of monkeys and cats were based
entirely upon the experimental data published in two original
articles [2,6]. We have also used as a control six Purkinje cells in
the cerebellum of mouse from two publications [17,19]. These
cells have highly branched dendrites. All neurons were used
from adult specimens and pooled into four groups as shown in
Table 1.

Table 1
A summary of the 114 cells used in the experiments

Species N0 R %

≥0.995 <0.995

Monkey 17 14 3 21.4
Cat 24 24 0 0
Human 30 28 2 7.1
Rat 43 42 1 2.4

Total 114 108 6 5.6

Methods of image preparations and fractal analysis are
outlined in the mentioned study [12] and are not covered here.
Briefly, the camera lucida drawings were digitized by a scanner
with maximal resolution (600 dpi) in order to generate authentic
digital images of the drawings. In their later work, Jelinek et al.
[8] have analyzed the fractal dimension at different resolutions
of a neuronal image. They concluded that cells scanned at
low resolution had higher values of fractal dimension than
those obtained at high resolution. Analyzing our experimental
material we have drawn the same conclusion. Since our topic
is the influence of dendrite complexity to the fractal character
of neurons, we have scanned all our drawings using maximal
resolution to get digital images that would maximize the
resemblance between the digital and original drawings. It
seems likely that such images retain most of the neuronal
details, enabling reduction of experimental errors in the fractal
measurements.

All the drawings were analyzed as skeleton images using
the public domain Image J software. All scanned images were
imported into the software. Axons, spines and soma were
removed digitally. Then the program performed a skeleton of
the image to a stick figure. The images were analyzed by the
box-counting method using the same software. Basically, this
method consists of “covering” the image border with sets of
squares. Each set is characterized by the size r of the square
edge. The corresponding number of squares N(r) necessary to
cover the border is presented as a function of r. The fractal
dimension D is determined from the slope S of the log–log rela-
tionship between N(r) and r, as D = 1 − S [18]. The interval of
box sizes was taken from 2 to 1024 pixels (when possible, it
was taken from 1 to 2048 pixels). We adopted the coefficient of
correlation R to evaluate the “goodness of fit” of the regression
line to data points valued 0.995 or higher.

In order to retain our hypothesis that the cells with dendrites
of uncomplicated shapes and sparse branching patterns (Fig. 1A)
could be considered fractal over three decades of scale, we used,
as a control, few cells (cerebella Purkinje cells in mouse) whose
dendrite trees show more complex structures and profuseness
of branching (Fig. 1B), and apply some techniques and image
preparations which seem to be useful to achieve it.

(i) When performing fractal analysis it should be noted that
different methods work best for different fractals. To test
our data for fractal character, we have used the box-counting
method which is both popular and commonly used for
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