Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

A divergence formula for randomness and dimension

Jack H. Lutz*

Department of Computer Science, Iowa State University, Ames, IA 50011, USA

ARTICLE INFO

Keywords: Constructive dimension Finite-state dimension Kolmogorov complexity Kullback–Leibler divergence Randomness Shannon entropy

ABSTRACT

If *S* is an infinite sequence over a finite alphabet Σ and β is a probability measure on Σ , then the *dimension* of *S* with respect to β , written dim^{β}(*S*), is a constructive version of Billingsley dimension that coincides with the (constructive Hausdorff) dimension dim(*S*) when β is the uniform probability measure. This paper shows that dim^{β}(*S*) and its dual Dim^{β}(*S*), the *strong dimension* of *S* with respect to β , can be used in conjunction with randomness to measure the similarity of two probability measures α and β on Σ . Specifically, we prove that the *divergence formula*

$$\dim^{\beta}(R) = \operatorname{Dim}^{\beta}(R) = \frac{\mathcal{H}(\alpha)}{\mathcal{H}(\alpha) + \mathcal{D}(\alpha \parallel \beta)}$$

holds whenever α and β are computable, positive probability measures on Σ and $R \in \Sigma^{\infty}$ is random with respect to α . In this formula, $\mathcal{H}(\alpha)$ is the Shannon entropy of α , and $\mathcal{D}(\alpha \parallel \beta)$ is the Kullback–Leibler divergence between α and β . We also show that the above formula holds for all sequences R that are α -normal (in the sense of Borel) when dim^{β}(R) and Dim^{β}(R) are replaced by the more effective finite-state dimensions dim^{β}_{FS}(R) and Dim_{FS}^{β}(R). In the course of proving this, we also prove finite-state compression characterizations of dim^{β}_{FS}(S) and Dim_{FS}^{β}(S).

© 2010 Published by Elsevier B.V.

1. Introduction

The constructive dimension dim(*S*) and the constructive strong dimension Dim(S) of an infinite sequence *S* over a finite alphabet Σ are constructive versions of the two most important classical fractal dimensions, namely, Hausdorff dimension [9] and packing dimension [22,21], respectively. These two constructive dimensions, which were introduced in [13,1], have been shown to have the useful characterizations

$$\dim(S) = \liminf_{w \to S} \frac{\kappa(w)}{|w| \log |\Sigma|}$$
(1.1)

and

$$\operatorname{Dim}(S) = \limsup_{w \to S} \frac{\mathrm{K}(w)}{|w| \log |\Sigma|},\tag{1.2}$$

where the logarithm is base-2 [16,1]. In these equations, K(w) is the Kolmogorov complexity of the prefix w of S, i.e., the *length in bits of the shortest program* that prints the string w. (See Section 2.6 or [11] for details.) The numerators in these equations are thus the *algorithmic information content* of w, while the denominators are the "naive" information content of w,

* Tel.: +1 515 294 9941; fax: +1 515 294 0258. *E-mail address:* lutz@cs.iastate.edu.

17/ >

^{0304-3975/\$ –} see front matter ${\rm \textcircled{O}}$ 2010 Published by Elsevier B.V. doi:10.1016/j.tcs.2010.09.005

also in bits. We thus understand (1.1) and (1.2) to say that dim(S) and Dim(S) are the lower and upper *information densities* of the sequence *S*. These constructive dimensions and their analogs at other levels of effectivity have been investigated extensively in recent years [10].

The constructive dimensions dim(*S*) and Dim(*S*) have recently been generalized to incorporate a probability measure ν on the sequence space Σ^{∞} as a parameter [14]. Specifically, for each such ν and each sequence $S \in \Sigma^{\infty}$, we now have the constructive dimension dim^{ν}(*S*) and the constructive strong dimension Dim^{ν}(*S*) of *S* with respect to ν . (The first of these is a constructive version of Billingsley dimension [2].) When ν is the uniform probability measure on Σ^{∞} , we have dim^{ν}(*S*) = dim(*S*) and Dim^{ν}(*S*) = Dim(*S*). A more interesting example occurs when ν is the product measure generated by a nonuniform probability measure β on the alphabet Σ . In this case, dim^{ν}(*S*) and Dim^{ν}(*S*), which we write as dim^{β}(*S*) and Dim^{β}(*S*), are again the lower and upper information densities of *S*, but these densities are now measured with respect to unequal letter costs. Specifically, it was shown in [14] that

$$\dim^{\beta}(S) = \liminf_{w \to S} \frac{\mathsf{K}(w)}{\mathfrak{l}_{\beta}(w)}$$
(1.3)

and

$$\operatorname{Dim}^{\beta}(S) = \limsup_{w \to S} \frac{K(w)}{I_{\beta}(w)},\tag{1.4}$$

where

$$l_{\beta}(w) = \sum_{i=0}^{|w|-1} \log \frac{1}{\beta(w[i])}$$

is the Shannon self-information of w with respect to β . These unequal letter costs $\log(1/\beta(a))$ for $a \in \Sigma$ can in fact be useful. For example, the complete analysis of the dimensions of individual points in self-similar fractals given by [14] requires these constructive dimensions with a particular choice of the probability measure β on Σ .

In this paper, we show how to use the constructive dimensions $\dim^{\beta}(S)$ and $\dim^{\beta}(S)$ in conjunction with randomness to measure the degree to which two probability measures on Σ are similar. To see why this might be possible, we note that the inequalities

$$0 \leq \dim^{\beta}(S) \leq \operatorname{Dim}^{\beta}(S) \leq 1$$

hold for all β and *S*, and that the maximum values

$$\dim^{\beta}(R) = \operatorname{Dim}^{\beta}(R) = 1 \tag{1.5}$$

are achieved if (but not only if) the sequence *R* is random with respect to β . It is thus reasonable to hope that, if *R* is random with respect to some other probability measure α on Σ , then dim^{β}(*R*) and Dim^{β}(*R*) will take on values whose closeness to 1 reflects the degree to which α is similar to β .

This is indeed the case. Our first main theorem says that the divergence formula

$$\dim^{\beta}(R) = \operatorname{Dim}^{\beta}(R) = \frac{\mathcal{H}(\alpha)}{\mathcal{H}(\alpha) + \mathcal{D}(\alpha||\beta)}$$
(1.6)

holds whenever α and β are computable, positive probability measures on Σ and $R \in \Sigma^{\infty}$ is random with respect to α . In this formula, $\mathcal{H}(\alpha)$ is the Shannon entropy of α , and $\mathcal{D}(\alpha||\beta)$ is the Kullback–Leibler divergence between α and β . When $\alpha = \beta$, the Kullback–Leibler divergence $\mathcal{D}(\alpha||\beta)$ is 0, so (1.6) coincides with (1.5). When α and β are dissimilar, the Kullback–Leibler divergence $\mathcal{D}(\alpha||\beta)$ is large, so the right-hand side of (1.6) is small. Hence the divergence formula tells us that, when R is α -random, dim^{β}(R) = Dim^{β}(R) is a quantity in [0, 1] whose closeness to 1 is an indicator of the similarity between α and β .

The proof of (1.6) serves as an outline of our other, more challenging task, which is to prove that the divergence formula (1.6) also holds for the much more effective *finite-state* β -dimension dim^{β}_{FS}(R) and *finite-state strong* β -dimension Dim_{FS}^{β}(R). (These dimensions, defined in Section 2.5, are generalizations of finite-state dimension and finite-state strong dimension, which were introduced in [6,1], respectively.)

With this objective in mind, our second main theorem characterizes the finite-state β -dimensions in terms of finite-state data compression. Specifically, this theorem says that, in analogy with (1.3) and (1.4), the identities

$$\dim_{\mathrm{FS}}^{\beta}(S) = \inf_{C} \liminf_{w \to S} \frac{|C(w)|}{I_{\beta}(w)}$$
(1.7)

and

$$\dim_{\mathrm{FS}}^{\beta}(S) = \inf_{C} \limsup_{w \to S} \frac{|C(w)|}{\mathcal{I}_{\beta}(w)}$$
(1.8)

Download English Version:

https://daneshyari.com/en/article/435099

Download Persian Version:

https://daneshyari.com/article/435099

Daneshyari.com