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a b s t r a c t

If S is an infinite sequence over a finite alphabetΣ andβ is a probabilitymeasure onΣ , then
the dimension of S with respect toβ , written dimβ(S), is a constructive version of Billingsley
dimension that coincides with the (constructive Hausdorff) dimension dim(S) when β is
the uniform probability measure. This paper shows that dimβ(S) and its dual Dimβ(S), the
strong dimension of S with respect to β , can be used in conjunction with randomness to
measure the similarity of two probability measures α and β on Σ . Specifically, we prove
that the divergence formula

dimβ(R) = Dimβ(R) =
H(α)

H(α) + D(α ‖ β)

holds whenever α and β are computable, positive probability measures on Σ and R ∈ Σ∞

is random with respect to α. In this formula, H(α) is the Shannon entropy of α, and
D(α ‖ β) is the Kullback–Leibler divergence between α and β . We also show that the
above formula holds for all sequences R that are α-normal (in the sense of Borel) when
dimβ(R) and Dimβ(R) are replaced by the more effective finite-state dimensions dimβ

FS(R)
and DimFS

β(R). In the course of proving this, we also prove finite-state compression
characterizations of dimβ

FS(S) and DimFS
β(S).

© 2010 Published by Elsevier B.V.

1. Introduction

The constructive dimension dim(S) and the constructive strong dimension Dim(S) of an infinite sequence S over a finite
alphabet Σ are constructive versions of the two most important classical fractal dimensions, namely, Hausdorff dimension
[9] and packing dimension [22,21], respectively. These two constructive dimensions, which were introduced in [13,1], have
been shown to have the useful characterizations

dim(S) = lim inf
w→S

K(w)

|w| log |Σ |
(1.1)

and

Dim(S) = lim sup
w→S

K(w)

|w| log |Σ |
, (1.2)

where the logarithm is base-2 [16,1]. In these equations, K(w) is the Kolmogorov complexity of the prefix w of S, i.e., the
length in bits of the shortest program that prints the string w. (See Section 2.6 or [11] for details.) The numerators in these
equations are thus the algorithmic information content ofw, while the denominators are the ‘‘naive’’ information content ofw,
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also in bits. We thus understand (1.1) and (1.2) to say that dim(S) and Dim(S) are the lower and upper information densities
of the sequence S. These constructive dimensions and their analogs at other levels of effectivity have been investigated
extensively in recent years [10].

The constructive dimensions dim(S) and Dim(S) have recently been generalized to incorporate a probability measure
ν on the sequence space Σ∞ as a parameter [14]. Specifically, for each such ν and each sequence S ∈ Σ∞, we now have
the constructive dimension dimν(S) and the constructive strong dimension Dimν(S) of S with respect to ν. (The first of
these is a constructive version of Billingsley dimension [2].) When ν is the uniform probability measure on Σ∞, we have
dimν(S) = dim(S) and Dimν(S) = Dim(S). A more interesting example occurs when ν is the product measure generated
by a nonuniform probability measure β on the alphabet Σ . In this case, dimν(S) and Dimν(S), which we write as dimβ(S)
and Dimβ(S), are again the lower and upper information densities of S, but these densities are now measured with respect
to unequal letter costs. Specifically, it was shown in [14] that

dimβ(S) = lim inf
w→S

K(w)

Iβ(w)
(1.3)

and

Dimβ(S) = lim sup
w→S

K(w)

Iβ(w)
, (1.4)

where

Iβ(w) =

|w|−1−
i=0

log
1

β(w[i])

is the Shannon self-information ofw with respect toβ . These unequal letter costs log(1/β(a)) for a ∈ Σ can in fact be useful.
For example, the complete analysis of the dimensions of individual points in self-similar fractals given by [14] requires these
constructive dimensions with a particular choice of the probability measure β on Σ .

In this paper, we show how to use the constructive dimensions dimβ(S) and Dimβ(S) in conjunction with randomness
to measure the degree to which two probability measures on Σ are similar. To see why this might be possible, we note that
the inequalities

0 ≤ dimβ(S) ≤ Dimβ(S) ≤ 1

hold for all β and S, and that the maximum values

dimβ(R) = Dimβ(R) = 1 (1.5)

are achieved if (but not only if) the sequence R is randomwith respect to β . It is thus reasonable to hope that, if R is random
with respect to some other probability measure α on Σ , then dimβ(R) and Dimβ(R) will take on values whose closeness to
1 reflects the degree to which α is similar to β .

This is indeed the case. Our first main theorem says that the divergence formula

dimβ(R) = Dimβ(R) =
H(α)

H(α) + D(α||β)
(1.6)

holds whenever α and β are computable, positive probability measures on Σ and R ∈ Σ∞ is random with respect to
α. In this formula, H(α) is the Shannon entropy of α, and D(α||β) is the Kullback–Leibler divergence between α and β .
When α = β , the Kullback–Leibler divergence D(α||β) is 0, so (1.6) coincides with (1.5). When α and β are dissimilar, the
Kullback–Leibler divergence D(α||β) is large, so the right-hand side of (1.6) is small. Hence the divergence formula tells us
that, when R is α-random, dimβ(R) = Dimβ(R) is a quantity in [0, 1] whose closeness to 1 is an indicator of the similarity
between α and β .

The proof of (1.6) serves as an outline of our other, more challenging task, which is to prove that the divergence formula
(1.6) also holds for the muchmore effective finite-state β-dimension dimβ

FS(R) and finite-state strong β-dimension DimFS
β(R).

(These dimensions, defined in Section 2.5, are generalizations of finite-state dimension and finite-state strong dimension,
which were introduced in [6,1], respectively.)

With this objective inmind, our secondmain theorem characterizes the finite-state β-dimensions in terms of finite-state
data compression. Specifically, this theorem says that, in analogy with (1.3) and (1.4), the identities

dimβ

FS(S) = inf
C

lim inf
w→S

|C(w)|

Iβ(w)
(1.7)

and

dimβ

FS(S) = inf
C

lim sup
w→S

|C(w)|

Iβ(w)
(1.8)
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