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necessary to show that an indirect store operation does not accidentally mutate a register.
To prove this and related properties, this article advocates using the domain of bitwise
linear congruences in conjunction with intervals to derive accurate range information.
The paper argues that these two domains complement one another when reasoning

gg&%rgza systems about microcontroller code. The paper also explains how SAT solving, which applied with
Binary code dichotomic search, can be used to recover branching conditions from binary code which,
Abstract interpretation in turn, further improves interval analysis.

Linear congruences © 2012 Elsevier B.V. All rights reserved.
Intervals

1. Introduction

Recent research in the fields of programming languages and computer security have led to the development of a
large number of techniques and tools for analysing programs for runtime errors and security vulnerabilities [22,24,27,
32,40,41,63]. These tools use model checking [3,20] or abstract interpretation [23] to approximate the set of reachable
program states. Most tools focus on analysing source code presented in a high-level programming language such as C or
Java. Such tools naturally operate on a high-level of abstraction, e.g. by assuming integer variables to have unbounded
precision, or by representing the heap memory symbolically. Furthermore, on desktop computers, which are the target of
classical source code analysers, operating systems typically control the hardware and the interaction between hardware and
software. This is not so for (microcontroller) binary code, which presents different challenges [5-7,18,19,59,60,65,67,73,74]
to verification than those posed by programs written in high-level languages. Microcontroller binary code typically executes
a nonterminating loop in which communication with the environment is performed. Data is then stored and processed,
often using bitwise operations, before values are written to the output ports. Control logic, which is often formulated in
terms of Boolean relations on status flags, and bitwise operations necessitate reasoning about the program semantics at the
granularity of bits. This presents a problem to verification efforts based on abstract interpretation since most work is tailored
to representations of program semantics using geometric abstractions such as affine [42] or polyhedral spaces [26,72]. The
conceptual difference between high-level geometric concepts and low-level bitwise relations presents a semantic gap that
needs to be bridged. Furthermore, the hardware is configured and controlled directly by the given program. Verification
tools thus need to integrate a hardware model. Specifically on hardware such as the ATMEL microcontroller series [1], any
verification argument must also pay special attention to the targets of indirect writes. An indirect write is a store operation
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0x55: RJUMP 2
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0x57: STPI X RO
0x58: CPI R30 69

0x59: CPC R31 R17

0X5A; BRNE -5 @

0x5B: RET

Fig. 1. Memcopy loop for the ATMEL ATmega16.

in which the contents of one register are stored at a target address that is held in another register. The target address of
the store operation is thus determined at runtime. On the ATmega family of microcontrollers, however, registers are merely
reserved memory locations in the same address space as the SRAM. It is thus possible to mutate a register, such as the stack
pointer or the program status word, if the target coincides with the address of the register.

1.1. Applications of range analysis in binary code verification

One approach to microcontroller verification is thus to assume that indirect stores never access registers [58]. This
approach is based on the assumption that code which accesses registers indirectly is so flawed that verification is not
worthwhile anyway. Though appealing in its simplicity, this assumption is dubious for handcrafted assembly code. It is also
not unknown for compilation itself to introduce errors, particularly at higher levels of optimisation [29,78]. The problem
of reasoning about the targets of indirect writes is further compounded by the fact that indirect stores often arise in loops
that are responsible, for instance, for data initialisation. Then, the same indirect store operation may write to a number of
different targets. A related problem is therefore showing that all such targets fall within some range that does not overlap
with the registers themselves [18]. The value of this information extends beyond tracking the values of registers. Indeed,
virtually any static analysis that is applied to microcontroller binary code either directly depends on or indirectly benefits
from the results of range analysis. These analyses include, but are not limited to, classical gen/Kkill bit-vector analyses [61]
and partial order reductions [34,76] — analyses that can be considered to be client analyses of range analysis. When these
client analyses are deployed on microcontroller code, which typically realise some form of concurrency, it is necessary to
reason about the execution of interrupt handlers (see [66, Sect. 5] and [68]). On ATmega microcontrollers, the interrupt
handlers themselves are controlled and thus depend on the value of the global interrupt flag. Furthermore, this flag forms
part of the program status word, which can be accessed indirectly, hence the causal, though indirect, relationship between
range analysis and the client analyses.

1.2. Hllustrative example

This paper addresses the problem of statically analysing the targets of indirect stores, whilst simultaneously modelling
data at the bit-level. Since the set of targets cannot be exactly determined statically, we employ abstract interpretation [23]
to compute a range of addresses that contains all possible targets. If the enclosing range is suitably tight, it is possible to verify
that the registers are not overwritten. Fig. 1illustrates some ATmega16 [ 1] assembly code and the corresponding control flow
graph (CFG). The instructions at locations 0x50-0x52 assign the 8-bit registers R17, R30 and R31 to the decimal constants
0, 66 and O, respectively. The following two instructions initialise the registers R26, and R27 with symbolic values stored
in other registers. The relative jump RJUMP 2 passes control to location 0x58. The LPMPI RO Z instruction first loads RO
with the contents of the byte at the address in program memory determined by the 16-bit register Z; then Z is incremented.
The instruction STPI X RO stores the contents of RO into the byte at address X and then increments X. On the ATmega16
microcontroller, each indirect memory access is indicated through one of the 16-bit pointer registers X, Y or Z. The register
X is a short-hand for concatenating the 8-bit registers R26 and R27, the 8-bit registers R28 and R29 constitute the 16-bit
register Y, and likewise Z is an alias for R30 and R31. It is important to note that the ATmega has a Harvard architecture, and
hence, program memory is separate from SRAM. Location 98 in program memory, for example, is different from location
98 in SRAM. Thus, program memory is accessed with special instructions such as LPMPI RO Z (load byte from program
memory at address Z in RO and post-increment Z), whereas SRAM is accessed using instructions such as STPI X RO (store
RO in SRAM at address X and post-increment X). Detecting self-modifying code, which we do not consider, is thus trivial.
The instructions CPI R30 69 and CPC R31 R17 compare Z against 69. This is implemented by subtracting the second
argument from the first one and setting the status flags accordingly. For the subsequent BRNE instruction, only the zero
flag in the status register, which is set iff Z equals 69, is relevant. The net effect of this code is to copy the contents of three
locations in program memory starting at address 66 into SRAM, where the start of the target SRAM region is defined by the
values of the registers R8 and R9 on input.
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