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a  b  s  t  r  a  c  t

Seeking  to  apply  brain–machine  interface  technology  in  neuroprosthetics,  a number  of  methods  for
predicting  trajectory  of the  elbow  and  wrist  have  been  proposed  and  have  shown  remarkable  results.
Recently,  the  prediction  of hand  trajectory  and  classification  of  hand  gestures  or  grasping  types  have
attracted  considerable  attention.  However,  trajectory  prediction  for  precise  finger  motion  has  remained
a challenge.  We  proposed  a method  for the prediction  of fingertip  motions  from  electrocorticographic  sig-
nals in  human  cortex.  A patient  performed  extension/flexion  tasks  with  three  fingers.  Average  Pearson’s
correlation  coefficients  and  normalized  root-mean-square  errors  between  decoded  and  actual  trajecto-
ries were  0.83–0.90  and  0.24–0.48,  respectively.  To confirm  generalizability  to  other  users,  we applied
our  method  to the BCI  Competition  IV  open  data  sets.  Our method  showed  that  the  prediction  accuracy
of  fingertip  trajectory  could  be  equivalent  to  that  of other  results  in  the  competition.

©  2014  Elsevier  Ireland  Ltd and  the  Japan  Neuroscience  Society.  All rights  reserved.

1. Introduction

Brain–machine interface (BMI) technology has the potential
to offer practical neuroprostheses for the physically impaired.
For the purpose of realizing an useful neuroprostheses, trajectory
prediction and classification of arm motion have been proposed
in a number of studies using intracortical electrodes, electrocor-
ticography (ECoG), electroencephalography, and other methods
(Wessberg et al., 2000; Koike et al., 2006; Waldert et al., 2008;
Yanagisawa et al., 2009; Chao et al., 2010; Watanabe et al., 2012;
Shimoda et al., 2012; Shin et al., 2012; Nakanishi et al., 2013; Chen
et al., 2013). Several studies have targeted not only the elbow
and wrist but also the hand and fingers as the next step toward

Abbreviations: ECoG, electrocorticography; BCI, brain–computer interface; BMI,
brain–machine interface; CC, Pearson’s correlation coefficient; nRMSE, normalized
root-mean-square error; LOO-CV, leave-one-out cross validation; CAR, common
average reference; SEM, standard error of the mean; MP  joint, metacarpal phalangeal
joint; CM joint, carpometacarpal joint.
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practical hand-arm robots that are usable in daily life. Such stud-
ies have included the prediction of grasping force (Carmena et al.,
2003) or aperture (Artemiadis et al., 2007; Zhuang et al., 2010),
open/close control of a gripper in primates (Velliste et al., 2008),
grasping movement control of an occupational therapy assist suit
for humans (Sakurada et al., 2013), onset detection of hand exten-
sion (Bashashati et al., 2007) and grasping (Pistohl et al., 2013),
classification of grasping type in monkeys (Stark and Abeles, 2007)
and in humans (Yanagisawa et al., 2011; Pistohl et al., 2012; Chestek
et al., 2013). These predictions are very important steps to realiz-
ing a neuroprosthesis, however, the prediction of finger motion is
more important for the consideration of a practical use.

In our everyday life, we perform complicated finger motion,
such as controlling a smart phone and tablet, operating a remote
controller of home electronics, and playing musical instruments.
The prediction of three-dimensional finger motion is the most nec-
essary function to interact with environments for quadriplegia.
Several ECoG-based studies reported the prediction of individual
finger flexion, i.e. one degree of freedom for each finger in humans
using ECoG (Miller et al., 2009; Kubanek et al., 2009; Acharya et al.,
2010; Liang and Bougrain, 2012). Since ECoGs have showed bet-
ter characteristics such as higher spatio-temporal resolution, good
signal-to-noise ratio, and long-term recording than scalp EEG and
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also less invasive than intracortical electrode signals, ECoG has
drawn attention as an effective brain recording for recent BMI.
To the best of our knowledge, the prediction of three-dimensional
finger motions using ECoG has not been realized yet.

We predicted extrinsic fingertip positions in three-dimensional
space using ECoG signals recorded from the left hemisphere in
an intractable epilepsy patient. The patient performed exten-
sion/flexion tasks with the thumb, index, and middle fingers of
the right hand. Three-dimensional positions of the fingertips were
measured with a motion capture system. The abduction and adduc-
tion motions were also observed, as well as flexion and extension
motions. Ninety planar electrodes were implanted subdurally on
the sensorimotor cortex. We  estimated coordinates x, y, and z
of fingertips from ECoG signals using the proposed ECoG feature
extraction method and sparse linear regression. We  also examined
the prediction results with Pearson’s correlation coefficient (CC)
and normalized root-mean-square error (nRMSE).

2. Methods

2.1. Ethics statement

The study was approved by the ethics committee of Osaka
University Hospital (Approval No. 08061) and performed in accor-
dance with the Declaration of Helsinki. ECoG electrodes were
implanted as part of the patient’s medical treatment. Written
informed consent was obtained prior to all research procedures.
Written informed consent was also obtained for the use of the
patient’s data in the study.

2.2. Participant and implanted electrodes

A 20 year old female diagnosed with intractable epilepsy par-
ticipated in this study. The patient showed no motor dysfunction.
She was subdurally implanted with one 4 × 5, one 2 × 5, and two
5 × 6 electrode arrays (Unique Medical Co., Tokyo, Japan) on the
left hemisphere, including the central and lateral sulci as shown
in Fig. 1. The arrays were composed of planar platinum electrodes
with a diameter of 3 mm and an inter-electrode distance of 10 mm.
The arrays were implanted for two weeks to determine the loca-
tions of epileptic foci. ECoG signals were recorded at a sampling
rate of 1000 Hz with a 128-channel digital EEG system (EEG 2000;
Nihon Koden Corporation, Tokyo, Japan). ECoG signals were refer-
enced to a scalp electrode on the nasion. Three example traces of
raw ECoG signals are shown at the bottom of Fig. 1B, recorded at
electrodes a, b, and c on the primary motor cortex (Fig. 1C).

2.3. Behavioral tasks and motion recordings

Behavioral tasks were performed approximately one week after
surgery in an electromagnetically shielded room. The patient was
seated in a chair with her right hand placed on a table palm-down.
She performed three finger-tapping tasks 1, 2 and 3 (Fig. 1A) at her
own pace for approximately 145 s for each task. Task 1 consisted of
repeated extensions and flexions of the thumb, totaling 58 trials.
Task 2 consisted of repeated index finger extensions and flexions,
also totaling 58 trials. Task 3 consisted of middle finger extensions
and flexions, totaling 54 trials. For all tasks, the wrist and non-task
fingers remained stationary on the table. Each task was  started after
a verbal cue from the researcher. The onset of each trial was  defined
as the time point when tangential velocity at the fingertip exceeded
5% of the maximum velocity during the trial, while the end point
of each trial was defined at 0.1 s before the next onset (the yel-
low box in Fig. 1B depicts an example ith trial). Coordinates x, y,
and z of the wrist and tips of the thumb, index, and middle fin-
gers were recorded with an optical motion capture system (Eagle

Digital System; Motion Analysis Corporation, Santa Rosa, CA) at a
sampling rate of 100 Hz using reflective 3D markers (black spheres
in Fig. 1A). The relative coordinates of tips of the thumb and fingers
with respect to the 3D marker on the wrist were used for trajectory
prediction.

2.4. ECoG signal processing and decoding procedures

ECoG signals were pre-processed, and then trajectories of the
tips of thumb and fingers were predicted from the ECoG sig-
nals using sparse linear regression (Sato, 2001). Details on this
method can be found in our previous studies (Shin et al., 2012;
Nakanishi et al., 2013). ECoG pre-processing and decoding are sum-
marized as follows: (1) raw ECoG signals were re-referenced to a
common average reference (CAR). (2) Re-referenced signals were
filtered into nine frequency bands with 4th-order bandpass Butter-
worth filters: ı (0–4 Hz), � (4–8 Hz),  ̨ (8–14 Hz), ˇ1 (14–20 Hz), ˇ2
(20–30 Hz), �1 (30–60 Hz), �2 (60–90 Hz), �3 (90–120 Hz), and �4
(120–150 Hz). (3) Each filtered signal was smoothed with a win-
dowed low-pass filter (Kaiser window with filter length n = 333,
parameter  ̌ = 6.204, transition bandwidth �f  = 12 Hz, and cut-off
frequency ωc = 8 Hz) (Mitra, 1998). In the procedures (2) and (3), we
bidirectionally filtered whole ECoG signals of each session forward
first and then backward. (4) Smoothed signals were down-sampled
from 1000 Hz to 100 Hz, i.e., the sampling rate of the motion cap-
ture. (5) Each signal was  z-score normalized using its mean and
standard deviation. (6) A weight matrix to be used for the trajectory
prediction was obtained with sparse linear regression using a train-
ing set of finger trajectories and z-scores. A fingertip position at time
t was expressed with 81,000 signal points (100 time points × 90
electrodes × 9 frequency bands) over the 1 s just before time t. The
sparse linear regression was  separately executed for each coordi-
nate x, y and z in this study. The weight matrix (size 1 × 81,000)
for each coordinate is independently decided. To shorten running
time on a computer, it is possible to simultaneously obtain the
weights of three coordinates as one matrix (size 3 × 81,000). How-
ever, the three rows in the matrix do not have direct relationship
each other. (7) Finger trajectories were predicted from one trial of
test data using the weight matrix. (8) Prediction accuracy was eval-
uated according to CC and nRMSE between the actual and inferred
trajectories. (9) Steps (6)–(8) were repeated, applying each trial as
test data one time to achieve the leave-one-out cross validation
(LOO-CV), and then CC and nRMSE were averaged across all tri-
als. Two-way ANOVA with Tukey’s multiple-comparison test was
adopted to test the effects of factors such as electrodes selected for
prediction and the three coordinates.

3. Results

The patient performed finger-tapping tasks with the thumb
(task 1), index finger (task 2) and middle finger (task 3) as shown
in Fig. 1A. The average and standard deviation of the duration
of trials in tasks 1, 2, and 3 were 2.21 ± 0.23, 2.21 ± 0.22, and
2.36 ± 0.25 seconds, respectively. Of the 54–58 trials per task, 14,
15, and 11 trials for tasks 1, 2, and 3, respectively, were excluded
from the LOO-CV due to burst noise in the ECoG signals.

Fig. 2A shows all results of the predicted trajectories using
90 electrodes. Fingertip trajectories with different spatial direc-
tions were successfully decoded from ECoG signals. Mean and
the standard error of the mean (SEM) of CC values across all
trials and coordinates for the thumb, index, and middle fingers
were 0.89 ± 0.0069, 0.86 ± 0.0098, and 0.86 ± 0.0088, respectively.
nRMSE means and SEMs for the thumb, index, and middle fingers
were 0.30 ± 0.016, 0.38 ± 0.028, and 0.28 ± 0.0078, respectively.
Typical examples of each finger trajectory with CC and nRMSE
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