Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Finding good 2-partitions of digraphs II. Enumerable properties

J. Bang-Jensen^{a,*,1}, Nathann Cohen^b, Frédéric Havet^{c,2}

^a Department of Mathematics and Computer Science, University of Southern Denmark, Odense DK-5230, Denmark

^b CNRS, Université Paris-Sud, France

^c Project Coati, I3S (CNRS, UNSA) and INRIA, Sophia Antipolis, France

A R T I C L E I N F O

Article history: Received 11 February 2016 Received in revised form 24 May 2016 Accepted 24 May 2016 Available online 7 June 2016 Communicated by V.Th. Paschos

Keywords: Oriented NP-complete Polynomial Partition Splitting digraphs Acyclic Semicomplete digraph Tournament Out-branching Feedback vertex set 2-Partition Minimum degree

ABSTRACT

We continue the study, initiated in [3], of the complexity of deciding whether a given digraph D has a vertex-partition into two disjoint subdigraphs with given structural properties and given minimum cardinality. Let \mathcal{E} be the following set of properties of digraphs: $\mathcal{E} = \{\text{strongly connected, connected, minimum out-degree at least 1, minimum in-degree at least 1, minimum semi-degree at least 1, minimum degree at least 1, having an out-branching, having an in-branching]. In this paper we determine, for all choices of <math>\mathbb{P}_1, \mathbb{P}_2$ from \mathcal{E} and all pairs of fixed positive integers k_1, k_2 , the complexity of deciding whether a digraph has a vertex partition into two digraphs D_1, D_2 such that D_i has property \mathbb{P}_i and $|V(D_i)| \ge k_i, i = 1, 2$. We also classify the complexity of the same problems when $\mathbb{P}_1 \in \mathcal{H}$ and $\mathbb{P}_2 \in \mathcal{H} \cup \mathcal{E}$, where $\mathcal{H} = \{\text{acyclic, complete, arc-less, oriented (no 2-cycle), semicomplete, symmetric, tournament\}$

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A *k*-partition of a (di)graph *D* is a partition of V(D) into *k* disjoint sets. Let $\mathbb{P}_1, \mathbb{P}_2$ be two (di)graph properties, then a $(\mathbb{P}_1, \mathbb{P}_2)$ -partition of a (di)graph *D* is a 2-partition (V_1, V_2) where V_1 induces a (di)graph with property \mathbb{P}_1 and V_2 a (di)graph with property \mathbb{P}_2 . For example a $(\delta^+ \ge 1, \delta^+ \ge 1)$ -partition is a 2-partition of a digraph where each partition induces a subdigraph with minimum out-degree at least 1.

There are many papers dealing with vertex-partition problems on (di)graphs. Examples (from a long list) are [1,3,8,9, 11,12,14,15,17–21,23,24,26–28,30]. Let \mathcal{E} be the following set of properties of digraphs: \mathcal{E} ={strongly connected, connected, minimum out-degree at least 1, minimum in-degree at least 1, minimum semi-degree at least 1, minimum degree at least 1, having an out-branching, having an in-branching}. In [3] a systematic study of the complexity 2-partition problems

http://dx.doi.org/10.1016/j.tcs.2016.05.034 0304-3975/© 2016 Elsevier B.V. All rights reserved.

^{*} Corresponding author.

E-mail addresses: jbj@imada.sdu.dk (J. Bang-Jensen), nathann.cohen@gmail.com (N. Cohen), frederic.havet@inria.fr (F. Havet).

¹ This work was done while the first author was visiting INRIA, Sophia Antipolis, France, project COATI. Hospitality and financial support from Labex UCN@Sophia, Sophia Antipolis is gratefully acknowledged. The research of Bang-Jensen was also supported by the Danish research council under grant number 1323-00178B.

² Partially supported by ANR under contract STINT ANR-13-BS02-0007.

Table 1 Complexity of the $(\mathbb{P}_1, \mathbb{P}_2)$ - $[k_1, k_2]$ -partition problem for some properties $\mathbb{P}_1, \mathbb{P}_2$.

$\mathbb{P}_1 \setminus \mathbb{P}_2$	strong	conn.	\mathbb{B}^+	\mathbb{B}^{-}	$\delta \ge 1$	$\delta^+ \geq 1$	$\delta^- \ge 1$	$\delta^0 \ge 1$	A	\mathbb{C}	X
strong	NPc	NPc ^L	NPc ^L	NPc	Р	Р	Р				
conn.	NPc ^R	Р	Р	Р	Р	NPc	NPc	NPc	Р	Р	Р
\mathbb{B}^+	NPc ^R	Р	Р	NPc	Р	NPc	Р	NPc	Р	Р	Р
\mathbb{B}^{-}	NPc ^R	Р	NPc	Р	Р	Р	NPc	NPc	Р	Р	Р
$\delta \ge 1$	NPc ^R	Р	Р	Р	Р	NPc	NPc	NPc	Р	Р	Р
$\delta^+ \ge 1$	NPc ^R	NPc	NPc	Р	NPc	Р	NPc	NPc	Р	Р	Р
$\delta^- \ge 1$	NPc ^R	NPc	Р	NPc	NPc	NPc	Р	NPc	Р	Р	Р
$\delta^0 \ge 1$	NPc	NPc	NPc	NPc	NPc	NPc	NPc	NPc	Р	Р	Р
A	Р	Р	Р	Р	Р	Р	Р	Р	NPc	Р	NPc
\mathbb{C}	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
X	Р	Р	Р	Р	Р	Р	Р	Р	NPc	Р	Р

Properties: conn.: connected; \mathbb{B}^+ : out-branchable; \mathbb{B}^- : in-branchable; \mathbb{A} : acyclic; \mathbb{C} : complete; \mathbb{X} : any property in 'being independent', 'being oriented', 'being semi-complete', 'being a tournament' and 'being symmetric'.

Complexities: P: polynomial-time solvable; NPc: NP-complete for all values of k_1, k_2 ; NPc^L: NP-complete for $k_1 \ge 2$, and polynomial-time solvable for $k_1 = 1$. NPc^R: NP-complete for $k_2 \ge 2$, and polynomial-time solvable for $k_2 = 1$.

Table 2			
Complexity of the $(\mathbb{P}$	$[1, \mathbb{P}_2)$ - $[k_1, k_2]$ -partit	ion problem o	n strong digraphs.

$\mathbb{P}_1 \setminus \mathbb{P}_2$	strong	conn.	\mathbb{B}^+	\mathbb{B}^{-}	$\delta \ge 1$	$\delta^+ \ge 1$	$\delta^- \ge 1$	$\delta^0 \ge 1$	A	\mathbb{C}	X
strong	NPc	Р	NPc*	NPc*	Р	NPc ^L	NPc ^L	NPc	Р	Р	Р
conn.	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
\mathbb{B}^+	NPc*	Р	Р	NPc*	Р	NPc ^L	Р	NPc ^L	Р	Р	Р
\mathbb{B}^{-}	NPc*	Р	NPc*	Р	Р	Р	NPc ^L	NPc ^L	Р	Р	Р
$\delta \ge 1$	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
$\delta^+ \ge 1$	NPc ^R	Р	NPc ^R	Р	Р	Р	NPc	NPc	Р	Р	Р
$\delta^- \ge 1$	NPc ^R	Р	Р	NPc ^R	Р	NPc	Р	NPc	Р	Р	Р
$\delta^0 \ge 1$	NPc	Р	NPc ^R	NPc ^R	Р	NPc	NPc	NPc	Р	Р	Р
A	Р	Р	Р	Р	Р	Р	Р	Р	NPc	Р	NPc
\mathbb{C}	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
X	Р	Р	Р	Р	Р	Р	Р	Р	NPc	Р	Р

The legend is the same as in Table 1, but we have one more complexity type: NPc*: NP-complete for $k_1, k_2 \ge 2$, and polynomial-time solvable for $k_1 = 1$ or $k_2 = 1$. We also emphasize with a bold **P**, the problems that are polynomial-time solvable on strong digraphs and NP-complete in the general case.

for digraphs was initiated and a full characterization was given for the case where one part in the 2-partition has a property from the set \mathcal{H} and the other from $\mathcal{H} \cup \mathcal{E}$. See Tables 1 and 2. In this paper we provide the last entries in those tables by determining the complexity of those partition problems where both parts are required to have a given property from \mathcal{E} . Each of these properties \mathbb{P} are **enumerable**: any given digraph *D* has only a polynomial number of inclusionwise maximal induced subdigraphs with property \mathbb{P} and all of those can be found in polynomial time (see [3, Lemma 2.2]).

For each of the 36 distinct 2-partition problems that we study, it can be checked in linear time whether the given digraph has this property. Hence all of them are in NP. Several of these 36 (\mathbb{P}_1 , \mathbb{P}_2)-partition problems are NP-complete and some results are somewhat surprising. For example, we show that the ($\delta^+ \ge 1$, $\delta \ge 1$)-partition problem is NP-complete. Some other problems are polynomial-time solvable because (under certain conditions) there are trivial (\mathbb{P}_1 , \mathbb{P}_2)-partitions (V_1 , V_2) with $|V_1| = 1$ (or $|V_2| = 1$). Therefore, in order to avoid such trivial partitions we consider [k_1 , k_2]-**partitions**, that is, partitions (V_1 , V_2) of V such that $|V_1| \ge k_1$ and $|V_2| \ge k_2$. Consequently, for each pair of above-mentioned properties and all pairs (k_1 , k_2) of positive integers, we consider the (\mathbb{P}_1 , \mathbb{P}_2)-[k_1 , k_2]-partition problem, which consists in deciding whether a given digraph D has a (\mathbb{P}_1 , \mathbb{P}_2)-[k_1 , k_2]-partition. The results are summarized in the upper-left 8 × 8 subtable of Table 1 (all other results, in grey, are proved in [3]).

The paper is organized as follows. We first introduce the necessary terminology. In Section 3 we handle the polynomialtime solvable cases. Then in Section 4 we handle the NP-complete cases and in Section 5 we investigate the impact of strong connectivity on the complexity of the partition problems. We prove that several of the NP-complete problems become polynomial-time solvable when the input is a strong digraph. We also point out that others are still NP-complete on strong digraphs. Our results are summarized in the upper 8×8 submatrix of Table 2. Finally we discuss a few other natural 2-partition problems.

2. Notation and definitions

Notation follows [2]. In this paper graphs and digraphs have no parallel edges/arcs and no loops. We use the shorthand notation [k] for the set $\{1, 2, ..., k\}$. Let D = (V, A) be a digraph with vertex set V and arc set A. We use |D| to denote |V(D)|. Given an arc $uv \in A$ we say that u **dominates** v and v is **dominated** by u. If uv or vu (or both) are arcs of D, then u and v are **adjacent**. If none of the arcs exist in D, then u and v are **non-adjacent**. The **underlying graph** of a digraph D, denoted UG(D), is obtained from D by suppressing the orientation of each arc and deleting multiple copies of the

Download English Version:

https://daneshyari.com/en/article/435173

Download Persian Version:

https://daneshyari.com/article/435173

Daneshyari.com