
Theoretical Computer Science 640 (2016) 41–51

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Computing abelian complexity of binary uniform morphic

words

F. Blanchet-Sadri a,∗, Daniel Seita b, David Wise c

a Department of Computer Science, University of North Carolina, P.O. Box 26170, Greensboro, NC 27402-6170, USA
b Computer Science Division, University of California, Berkeley, 387 Soda Hall, Berkeley, CA 94720-1776, USA
c Department of Mathematical Sciences, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15289, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 December 2015
Received in revised form 24 March 2016
Accepted 31 May 2016
Available online 6 June 2016
Communicated by D. Perrin

Keywords:
Formal languages
Algorithms
Analysis of algorithms
Abelian complexity
Morphisms
Morphic words
Automatic sequences

Although a lot of research has been done on the factor complexity (also called subword
complexity) of morphic words obtained as fixed points of iterated morphisms, there has
been little development in exploring algorithms that can efficiently compute their abelian
complexity. The factor complexity counts the number of factors of a given length n, while
the abelian complexity counts that number up to letter permutation. We propose and
analyze a simple O(n) algorithm for quickly computing the exact abelian complexities
for all indices from 1 up to n, when considering binary uniform morphisms. Using
our algorithm we also analyze the structure in the abelian complexity for that class of
morphisms. Our main result implies, in particular, that the infinite word over the alphabet
{−1, 0, 1} constructed from the consecutive forward differences of the abelian complexity
of a fixed point of a binary uniform morphism is in fact an automatic sequence with the
same morphic length. Since the proof produces morphisms that typically contain many
redundant letters, we present an efficient algorithm to eliminate them in order to simplify
the morphisms and to see the patterns produced more clearly.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The concept of abelian complexity is relatively new as compared to its classical counterpart of factor complexity. On the
one hand, the factor complexity of a given infinite word w is a function ρw : N →N that maps an integer n to the number
of distinct factors of w of length n. On the other hand, the abelian complexity of w is a function ρab

w :N →N that maps an
integer n to the number of distinct Parikh vectors of factors of w of length n. Parikh vectors, which appear in the literature
under various names such as compomers [5,6], jumbled patterns [8,7], permutation patterns [9,18,24], commutative closures
[19], content vectors [19], to name a few, are vectors that record the frequency of each letter in the factors. So the abelian
complexity counts the number of distinct factors of a given length up to letter permutation. For a survey on abelian concepts
such as abelian complexity as well as applications, we refer the reader to [11].

We focus on the abelian complexity of those words obtained as fixed points of iterated morphisms starting at some
letter. For example, the Thue–Morse word is the fixed point starting at 0 of the uniform morphism 0 �→ 01, 1 �→ 10 over the

* Corresponding author.
E-mail addresses: blanchet@uncg.edu (F. Blanchet-Sadri), seita@berkeley.edu (D. Seita), dwise@andrew.cmu.edu (D. Wise).

http://dx.doi.org/10.1016/j.tcs.2016.05.046
0304-3975/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2016.05.046
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:blanchet@uncg.edu
mailto:seita@berkeley.edu
mailto:dwise@andrew.cmu.edu
http://dx.doi.org/10.1016/j.tcs.2016.05.046
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2016.05.046&domain=pdf

42 F. Blanchet-Sadri et al. / Theoretical Computer Science 640 (2016) 41–51

binary alphabet {0, 1}, i.e.,

0110100110010110 · · · .

A lot of research has been done on the factor complexity of fixed points of morphisms, e.g., Frid [20] obtained an explicit
formula for the factor complexity of the words obtained from a binary uniform morphism.

As to research done on the abelian complexity of fixed points of morphisms, there are two main approaches that have
been taken so far. The first approach consists in deriving a formula. This is in general very difficult to do, so it has only
been done for a few special cases over a binary or a ternary alphabet: Sturmian words [12], the Thue–Morse word [27], the
Tribonacci word, i.e., the fixed point starting at 0 of the morphism 0 �→ 01, 1 �→ 02, 2 �→ 0 [26], the paper-folding word [22],
and quadratic Parry words, i.e., a morphism of the type 0 �→ 0p1, 1 �→ 0q with p ≥ q ≥ 1 or of the type 0 �→ 0p1, 1 �→ 0q1
with p > q ≥ 1, [2]. Constant and ultimately constant abelian complexity of infinite words has also been studied [13,28].
The second approach consists in sliding a window of size n on a sufficiently long prefix of a fixed point w of a morphism to
count the number of distinct Parikh vectors. This is also in general very difficult to do as the required prefix’s length grows
to infinity as n goes to infinity, exhausting computer memory. Reference [30] combines these two approaches: it considers
an infinite word w belonging to a subclass of Parry words, and instead of sliding a window of size n on a sufficiently long
prefix of w , it finds a walk on a transition diagram of a discrete finite-state automaton constructed from w , a finite graph
that is independent of n. Equivalently, it is shown how to find a transition function and an output function that allow the
evaluation of the value ρab

w (n) in O(logn) steps.
Both approaches being difficult, there has also been work on the asymptotic abelian complexity of some morphic words,

e.g., the fixed point starting at 0 of the non-uniform morphism 0 �→ 012, 1 �→ 02, 2 �→ 1 [3]. Such works are mainly con-
cerned with the asymptotic behaviors of the abelian complexities rather than their specific values. The classification of the
asymptotic growths of the abelian complexities of fixed points of binary morphisms has been undertaken and a complete
classification in the case of binary uniform morphisms has been derived [4]. This classification had previously been done
for the factor complexity of fixed points of morphisms [14–17,23].

There has been little development in exploring algorithms that can efficiently compute abelian complexity values. Our
paper presents an efficient algorithm for binary uniform morphisms, and also exposes an interesting mathematical connec-
tion between a class of morphisms and the abelian complexities of their fixed points.

The contents of our paper are as follows: In Section 2, we discuss terminology related to the abelian complexity of fixed
points of morphisms. In Section 3, we describe and analyze a simple O(n) algorithm for computing the abelian complexities
ρab(n) for all indices from 1 up to n, when considering binary uniform morphisms. In Section 4, we discuss morphic words
and prove some of their properties not shared by fixed points of morphisms. They are constructed from two morphisms
σ and τ . In Section 5, using our algorithm, we analyze the structure in the abelian complexity of fixed points of binary
uniform morphisms. We state and prove our main result which implies, in particular, that if ϕ is a binary uniform morphism
with morphic length � and the number of zeroes in ϕ(0) minus the number of zeroes in ϕ(1) is not equal to 1, then the
infinite word over the alphabet {−1, 0, 1} constructed from the forward differences of ρab

ϕω(0) , where ϕω(0) denotes the fixed
point of ϕ starting at 0, is an �-automatic sequence. In Section 6, we prove some results on self-similarity. In Section 7,
we give an efficient algorithm to eliminate redundancies in automatic sequences. This algorithm is of interest because the
morphisms σ and τ constructed in the proof of our main result typically contain many redundant letters, so it is nice to
be able to simplify the morphisms to see the pattern produced more clearly. Finally in Section 8, we conclude with some
remarks and open problems for future work.

2. Preliminaries

Let � denote an arbitrary alphabet. A word w over � is a (finite or infinite) sequence of characters from �. The character
at position i of w is denoted by w[i] (position labeling starts at 0) and the factor from position i to position j inclusive by
w[i.. j]. If j is non-inclusive, the factor is denoted by w[i.. j). Here [i.. j] (resp., [i.. j)) denotes the set {i, i + 1, . . . , j} (resp.,
{i, i + 1, . . . , j − 1}). When w is finite, the number of characters in w is denoted by |w| and is called the length of w . The
empty word ε is the word of length 0 and �∗ denotes the set of all finite words over �, including ε. Equipped with the
concatenation of words, �∗ forms a monoid with ε acting as the identity.

Define the factor complexity ρw of a word w over � to be the function that, for each positive integer n, returns the
number of distinct factors of length n of w . Likewise, define the abelian complexity ρab

w of a word w over � to be the
function that, for each positive integer n, returns the number of abelian equivalence classes of factors of length n of w . Here
two factors are abelian equivalent if one can be obtained from the other by a permutation of characters. If w is understood,
we often drop it and simply write ρ, ρab respectively. To compute ρab(n), we count the number of Parikh vectors for all
length-n factors, where the Parikh vector of a factor v is the vector whose ith entry is the number of occurrences of the ith
letter in v; e.g., the Parikh vector of ababbca is (3, 3, 1).

A morphism ϕ over � = {0, 1, . . . , k − 1} is a function �∗ → �∗ such that if u, v ∈ �∗ , we have ϕ(uv) = ϕ(u)ϕ(v). We
denote it as ϕ = (x0, x1, . . . , xk−1), where ϕ(i) = xi . The fixed point ϕω(a) of morphism ϕ over � starting at a ∈ � is the
limit as n → ∞ of ϕn(a), if it exists. A morphism is binary if it is over a 2-letter alphabet. A morphism ϕ over � is uniform
if |ϕ(a)| = |ϕ(b)| for all a, b ∈ � (it is �-uniform if |ϕ(a)| = � for all a ∈ �).

Download English Version:

https://daneshyari.com/en/article/435175

Download Persian Version:

https://daneshyari.com/article/435175

Daneshyari.com

https://daneshyari.com/en/article/435175
https://daneshyari.com/article/435175
https://daneshyari.com

