A dichotomy theorem for circular colouring reconfiguration

Richard C. Brewster ${ }^{\mathrm{a}, *, 1}$, Sean McGuinness ${ }^{\mathrm{a}, 1}$, Benjamin Moore ${ }^{\mathrm{b}, 1}$, Jonathan A. Noel ${ }^{\text {c, }} 1$
${ }^{\text {a }}$ Department of Mathematics and Statistics, Thompson Rivers University, Kamloops, Canada
${ }^{\text {b }}$ Department of Mathematics, Simon Fraser University, Burnaby, Canada
${ }^{\text {c }}$ Mathematical Institute, University of Oxford, Oxford, United Kingdom

ARTICLE INFO

Article history:

Received 21 August 2015
Received in revised form 13 April 2016
Accepted 6 May 2016
Available online 24 May 2016
Communicated by P. Widmayer

Keywords:

Reconfiguration
Recolouring
Dichotomy
PSPACE
Circular colouring
Homomorphism
Graph colouring

Abstract

Let p and q be positive integers with $p / q \geq 2$. The "reconfiguration problem" for circular colourings asks, given two (p, q)-colourings f and g of a graph G, is it possible to transform f into g by changing the colour of one vertex at a time such that every intermediate mapping is a (p, q)-colouring? We show that this problem can be solved in polynomial time for $2 \leq p / q<4$ and that it is PSPACE-complete for $p / q \geq 4$. This generalizes a known dichotomy theorem for reconfiguring classical graph colourings. As an application of the reconfiguration algorithm, we show that graphs with fewer than $(k-1)!/ 2$ cycles of length divisible by k are k-colourable.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, a large body of research has emerged concerning so-called "reconfiguration" variants of combinatorial problems (see, e.g., the survey of van den Heuvel [14] and the references therein, as well as [15,16]). These problems are typically of the following form: given two solutions to a fixed combinatorial problem (e.g. two cliques of order k in a graph or two satisfying assignments of a specific 3-SAT instance) is it possible to transform one of these solutions into the other by applying a sequence of allowed modifications such that every intermediate object is also a solution to the problem?

As a specific example, for a fixed integer k and a graph G, one may ask the following: given two (proper) k-colourings f and g of G, is it possible to transform f into g by changing the colour of one vertex at a time such that every intermediate mapping is a k-colouring? ${ }^{2}$ In the affirmative we say that f reconfigures to g. This problem is clearly solvable in polynomial time for $k \leq 2$. Rather surprisingly, Cereceda, van den Heuvel and Johnson [7] proved that it is also solvable in polynomial time for $k=3$ despite the fact that determining if a graph admits a 3-colouring is NP-complete. On the other hand, Bonsma and Cereceda [3] proved that, when $k \geq 4$, the problem is PSPACE-complete. (As pointed out in [6], a similar result was

[^0]proved by Jakob [17], but in his result the integer k is part of the input.) Combining these two results yields the following dichotomy theorem:

Theorem 1 (Cereceda, van den Heuvel and Johnson [7]; Bonsma and Cereceda [3]). The reconfiguration problem for k-colourings is solvable in polynomial time for $k \leq 3$ and is PSPACE-complete for $k \geq 4$.

In this paper, we study the complexity of the reconfiguration problem for circular colourings. Given a graph G and positive integers p and q with $p / q \geq 2$, a (circular) (p, q)-colouring of G is a mapping $f: V(G) \rightarrow\{0, \ldots, p-1\}$ such that

$$
\begin{equation*}
\text { if } u v \in E(G) \text {, then } q \leq|f(u)-f(v)| \leq p-q \tag{1}
\end{equation*}
$$

Clearly, a $(p, 1)$-colouring is nothing more than a p-colouring and so (p, q)-colourings generalize classical graph colourings. Circular colourings were introduced by Vince [22], and have been studied extensively; see the survey of Zhu [25]. Analogous to that of classical graph colourings, the reconfiguration problem for circular colourings asks, given (p, q)-colourings f and g of G, whether it is possible to reconfigure f into g by recolouring one vertex at a time while maintaining (1) throughout.

Classical graph colourings and circular colourings are both special cases of graph homomorphisms. Recall, a homomorphism from a graph G to a graph H (also called an H-colouring of G) is a mapping $f: V(G) \rightarrow V(H)$ such that $f(u) f(v) \in E(H)$ whenever $u v \in E(G)$. The notation $f: G \rightarrow H$ indicates that f is a homomorphism from G to H. In this language, a k-colouring is simply a homomorphism to a complete graph on k vertices. A (p, q)-colouring of G is equivalent to a homomorphism from G to the graph $G_{p, q}$ which has vertex set $\{0, \ldots, p-1\}$ and edge set $\{i j: q \leq|i-j| \leq p-q\}$. The graph $G_{p, q}$ is called a circular clique.

Remark 2. It is well known that $G_{p, q}$ admits a homomorphism to $G_{p^{\prime}, q^{\prime}}$ if and only if $p / q \leq p^{\prime} / q^{\prime}$ [22]. Therefore, since the composition of two homomorphisms is a homomorphism, a graph G admits a (p, q)-colouring if and only if it admits a $\left(p^{\prime}, q^{\prime}\right)$-colouring for all $p^{\prime} / q^{\prime} \geq p / q$.

Given two homomorphisms $f, g: G \rightarrow H$, we say f reconfigures to g if there a sequence $\left(f=f_{0}\right), f_{1}, f_{2}, \ldots,\left(f_{n}=\right.$ g) of homomorphisms from G to H such that f_{i} and f_{i+1} differ on only one vertex. The sequence is referred to as a reconfiguration sequence. Clearly the existence of a reconfiguration sequence from f to g can be determined independently for each component of G, so we may assume that G is connected. We define the general homomorphism reconfiguration problem as follows. Let H be a fixed graph.

H-Recolouring

Instance: A connected graph G, and two homomorphisms $f, g: G \rightarrow H$.
Question: Does f reconfigure to g ?
When $H=K_{k}$ or $H=G_{p, q}$ we will call the problem k-Recolouring and (p, q)-Recolouring respectively. Thus, Theorem 1 is a dichotomy theorem for k-Recolouring. Our main result is a dichotomy theorem for (p, q)-Recolouring:

Theorem 3. Let p, q be fixed positive integers with $p / q \geq 2$. Then the (p, q)-Recolouring problem is solvable in polynomial time for $2 \leq p / q<4$ and is PSPACE-complete for $p / q \geq 4$.

The complexity of H-Recolouring is only known for a handful of families of targets. Theorem 1 is a dichotomy theorem for the family of complete graphs and Theorem 3 is a dichotomy theorem for the family of circular cliques. Recently, Wrochna [24] (see also [23]) proved that H-Recolouring is polynomial whenever H does not contain a 4-cycle. In contrast, one can observe that $G_{p, q}$ contains 4 -cycles whenever $p>2 q+1$ and so the polynomial side of Theorem 3 does not follow directly from the result of Wrochna. In a follow-up paper [5], we determine the complexity of H-Recolouring for several additional classes of graphs including, for example, odd wheels.

The rest of the paper is outlined as follows. In Section 2, we provide an explicit polynomial-time algorithm for deciding the (p, q)-Recolouring problem when $2 \leq p / q<4$. In Section 3, we show that, when $p / q \geq 4$, the reconfiguration problem for $\lfloor p / q\rfloor$-colourings can be reduced to the reconfiguration problem for (p, q)-colourings, thereby completing the proof of Theorem 3 (via Theorem 1). We close the paper by presenting an unpublished argument of Wrochna which uses a result of [7] (on which our algorithm is based) to show that graphs with no cycle of length 0 mod 3 are 3-colourable. This result was originally proved by Chen and Saito [8]. We then generalize Wrochna's argument to show that graphs with chromatic number greater than k must contain at least $\frac{(k-1)!}{2}$ distinct cycles of length $0 \bmod k$ and conjecture a stronger bound.

2. The polynomial cases: $\mathbf{2 \leq p / q < 4}$

We now extend the ideas of [7] to study the complexity of (p, q)-Recolouring for $2 \leq p / q<4$. Given two 3-colourings f and g of a graph G, the algorithm in [7] consists of two phases. The first phase tests whether the so-called "fixed vertices"

https://daneshyari.com/en/article/435191

Download Persian Version:

https://daneshyari.com/article/435191

Daneshyari.com

[^0]: Th This research was completed while the third author was a student at Thompson Rivers University.

 * Corresponding author.

 E-mail addresses: rbrewster@tru.ca (R.C. Brewster), smcguinness@tru.ca (S. McGuinness), brmoore@sfu.ca (B. Moore), noel@maths.ox.ac.uk (J.A. Noel).
 ${ }^{1}$ Research supported by the Natural Sciences and Engineering Research Council of Canada. Grant RGPIN-2014-04760 and RGPIN-2015-04872.
 2 Throughout the paper, the term k-colouring will refer to a proper k-colouring.

