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The problem of clustering a set of points moving on the line consists of the following: given 
positive integers n and k, the initial position and the velocity of n points, find an optimal 
k-clustering of the points. We consider two classical quality measures for the clustering: 
minimizing the sum of the clusters diameters and minimizing the maximum diameter of 
a cluster. For the former, we present polynomial-time algorithms under some assumptions 
and, for the latter, a (2.71 + ε)-approximation.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Clustering refers to a well-known class of problems whose goal is to partition a set into groups of “similar” elements. 
The notion of similarity and the format of the partition depend on the application. In this work, we study two clustering 
problems in a kinetic context, where points move continuously.

There is a plethora of works on kinetic variants of clustering in the literature. Variants might differ both on the type of 
clustering searched and on the type of movement allowed for the points. Some variants search for a good static clustering 
for the moving points, while others search for a good clustering that adapts as the points move, sometimes in a controlled 
way. As in the static case, there are several possibilities for measuring the quality of a clustering, such as the maximum 
diameter of one of its clusters, or the sum of the diameters of the clusters. In what follows, we focus on results from the 
literature that relate more closely to ours.

Atallah [1] proposed a model for the points movement where the points are in a d-dimensional space and each coor-
dinate of each point is given by a polynomial on the time variable. Several works adopt this model, sometimes restricting 
the degree of the polynomial to be bounded by a (usually small) constant. Another model for the points movement was 
introduced by Basch, Guibas, and Hershberger [2], and allows for changes in the description of a point movement. Specif-
ically, the motion of a point is given by a piecewise function of constant algebraic degree, known as the point flight plan. 
One particular case of this model that is often considered in the literature is the case in which each flight plan consists of 
a piecewise linear function on the time variable.

Using Atallah’s model, Har-Peled [3] showed how to apply a clustering algorithm for the static setting to find a compet-
itive static clustering of the moving points. His objective was to find k centers that cover all the points within a minimum 
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radius. When the polynomials describing the points movement have degree at most μ, his algorithm relaxes the restriction 
on the number of clusters, allowing at most kμ+1 clusters, in order to achieve a constant approximation ratio with respect 
to the optimal radius of a k-clustering at any time. Hellweg and Sohler [4] considered the variant of Har-Peled’s problem in 
which the clustering quality measure is the one used in the k-means, that is, the sum of the square of the radius of the clus-
ters, and they presented an algorithm that produces a static kμ+1-clustering for a set of moving points that approximates, 
at all times, the k-means optimal clustering for these points.

Basch, Guibas, and Hershberger [2] introduced a framework, known as KDS (for kinetic data structure), to efficiently keep 
an attribute, such as the convex hull or a current pair of closest points, for a set of moving points. This framework was used 
to provide good clusterings for sets of moving points. For instance, Gao, Guibas, Hershberger, Zhang, and Zhu [5] proposed 
a randomized algorithm to maintain, as the points move, a constant approximation for a clustering minimizing the number 
of discrete centers needed to cover all points within a fixed radius. Gao, Guibas, and Nguyen [6] gave a KDS to maintain an 
8-approximation for the kinetic k-center. Friedler and Mount improved on this result by presenting a KDS that maintains a 
(4 + ε)-approximation for the kinetic robust k-center (the robust k-center is a generalization of the k-center that accounts 
for outliers). Bespamyatnikh, Bhattacharya, Kirpatrick, and Segal [7] presented KDS’s for 1-center and 1-median of a set of 
points moving in the plane.

In the first class of mentioned results, one looks for a static clustering for a set of moving points, while in the second 
class the goal is to keep an (approximately) optimal clustering at all times. With Schabanel [8], we proposed an intermediate 
version between these two goals, that allows the clustering to change over time, but charges for this, imposing a certain 
stability in the clustering. The amount one charges for the changes, called instability cost, allows for more changes, or less, 
in the clustering over time. Even in the 1-dimensional case addressed in [8], this variant of the problem turned out quite 
difficult for all considered clustering quality measures, and even achieving approximations in general seems challenging. 
Thus it was natural to consider the extreme cases of the instability cost, namely, zero and infinite. The zero instability cost 
leads to easy problems, as it is enough to solve the corresponding static 1-dimensional clustering problem in each time 
instant, and that is easy for the considered clustering quality measures. On the other hand, the infinite instability cost leads 
to the case of looking for a good static clustering of the moving points, which is the case we address in this paper.

So our work is closer to the ones of Har-Peled, and Hellweg and Sohler, as we also look for a static clustering of 
moving points, instead of a way to keep an (almost) optimal k-clustering all the time. But the goal is slightly different. 
We do not look for a static clustering that is approximately optimal at each time instant, but for a static k-clustering 
which is approximately optimal when compared to the best static k-clustering. Specifically, we consider the 1-dimensional 
case (d = 1), linear movements (μ = 1), and two classical quality measures for the clustering: minimizing the sum of the 
clusters diameters and minimizing the maximum diameter of a cluster. The diameter of a cluster is measured over the total 
time period, namely, it is the sum (or integral) of the diameter of the cluster over time. For the first quality measure, we 
present a polynomial-time algorithm under some assumptions and, for the second one, a ((4 + √

2)/2 + ε)-approximation 
for every ε > 0.

In Section 2, we formalize our model for the movement of the points and give the definition of the diameter of a cluster 
in our setting, to precisely state the two variants of clustering we address. In Section 3, we present the polynomial-time 
algorithm for the first variant and, in Section 4, we present the approximation for the second variant. Some final comments 
and open problems are stated in Section 5.

2. One dimensional kinetic model and the problems

In our kinetic model, n points move with uniform rectilinear velocity during a continuous time interval. Without loss 
of generality, the time interval is [0, 1]. Each point i ∈ {1, 2, . . . , n} has an initial position xi(0) and its velocity is given by 
a vector vi . We only consider points in R, so the position and the velocity are real numbers. A positive/negative velocity 
indicates a movement to the right/left respectively. This is a particular case of the KDS [2] and Atallah’s model [1].

At an instant t in [0, 1], the position xi(t) of a point i with initial position xi(0) and velocity vi is given by the function

xi(t) = xi(0) + vit.

This function represents a segment on the Cartesian plane, called the trajectory of point i, and is given by the pair (xi(0), vi). 
We draw the Cartesian plane with the horizontal axis representing the position x and the vertical axis representing the 
time t . Since the time interval is always [0, 1], the strip of the plane between t = 0 and t = 1 will be called time-strip.

For our purpose, no two points have the same trajectory, or they can be treated as one. Hence, we assume a one-to-one 
relation between moving points and their trajectories, and mostly refer to trajectories instead of moving points in what 
follows.

Given a finite set S of trajectories, a cluster is a subset of S and a k-clustering is a partition of S into k clusters. Note that, 
as a cluster might be empty, every k′-clustering for k′ < k corresponds to a k-clustering by adding k − k′ empty clusters. 
Conversely, any k-clustering of S with more than |S| clusters may be converted into an |S|-clustering by disregarding some 
empty clusters. So we may assume that 1 � k � |S|. The left side of a nonempty cluster C is the piecewise linear function 
mini∈C xi(t) for t ∈ [0, 1]. Analogously, the right side is maxi∈C xi(t) for t ∈ [0, 1]. The span of a cluster C , span(C), is empty 
if C is empty, otherwise it is the region within the time-strip bounded by the left and right sides of C . The diameter of C is 
the area of its span, denoted by diam(C). See Fig. 1.
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