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Topologies for data center interconnection networks have been proposed in the literature 
through various graph classes and operations. A common trait to most existing designs is 
that they enhance the symmetric properties of the underlying graphs. Indeed, symmetry 
is a desirable property for interconnection networks because it minimizes congestion 
problems and it allows each entity to run the same routing protocol. However, despite 
sharing similarities these topologies all come with their own routing protocol. Recently, 
generic routing schemes have been introduced which can be implemented for any 
interconnection network. The performances of such universal routing schemes are intima-
tely related to the hyperbolicity of the topology. Roughly, graph hyperbolicity is a metric 
parameter which measures how close is the shortest-path metric of a graph from a tree 
metric (the smaller the gap the better). Motivated by the good performances in practice 
of these new routing schemes, we propose the first general study of the hyperbolicity 
of data center interconnection networks. Our findings are disappointingly negative: we 
prove that the hyperbolicity of most data center interconnection topologies scales linearly 
with their diameter, that is the worst-case possible for hyperbolicity. To obtain these 
results, we introduce original connection between hyperbolicity and the properties of the 
endomorphism monoid of a graph. In particular, our results extend to all vertex and edge-
transitive graphs. Additional results are obtained for de Bruijn and Kautz graphs, grid-like 
graphs and networks from the so-called Cayley model.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The network topologies that are used to interconnect the computing units of large-scale facilities (e.g., super computers, 
data centers hosting cloud applications, etc.) are designed to optimize various constraints such as equipment cost, deploy-
ment time, capacity and bandwidth, routing functionalities, reliability to equipment failures, power consumption, etc. This 
large variety of (conflicting) criteria has yielded numerous proposals of interconnection networks. See for instance [1–10] for 
the most recent ones. A common feature of the proposed constructions is to design network topologies offering a high-level 
of symmetries. Indeed, it is easier to balance the traffic load, and hence to minimize the congestion, on network topologies 
with a high-level of symmetry. Furthermore, it simplifies the initial wiring of the physical infrastructure and it ensures that 
each router node can run the protocol.
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However, despite sharing properties, interconnection networks rely on specific routing algorithms that are optimized for 
each topology. As a novel step toward efficient and topology agnostic routing schemes, the authors in [11–13] proposed 
to use greedy routing schemes based on an embedding of the topology into certain metric space such as the hyperbolic 
metric space, and more recently the word metric space. This approach has been shown particularly efficient for Internet-like 
graphs [14,15] where routes with low stretch are obtained. One explanation of this good behavior is that Internet-like graphs 
have low hyperbolicity [16,17], a graph parameter providing sharp bounds on the stretch (or distortion) of the distances in 
a graph when it is embedded into an edge-weighted tree.

In this paper, we characterize or give upper and lower-bounds on the hyperbolicity of a broad range of interconnec-
tion network topologies. These bounds can be used to analyze the worst-case behavior of greedy routing schemes in these 
topologies. Before we present our results, let us further put in context the role they play in routing and in other distance-
related problems.

Related work. Greedy routing schemes based on an embedding into the hyperbolic space have been introduced by Kleinberg 
in [14]. Since then, various authors explored further this approach [15,18,19]). In particular, they showed that the graphs of 
the Autonomous Systems of the Internet embed better into a hyperbolic space than into an Euclidean space.1 It was only 
recently in [21] that a formal relationship between the performances of hyperbolic embeddings and the hyperbolicity was 
proved. Namely, the authors proved that the over-delay for such routing schemes, or equivalently the stretch of the routing, 
depends on the hyperbolicity. In [22], the authors proved that similar results hold for greedy routing schemes based on 
an embedding of the topology into some word metric space (e.g., see [23] for more information). More precisely, they use 
hyperbolicity to upper-bound the complexity of their routings, as well as to bound the size of the automata that are involved 
in their routing schemes.

Their results add up to prior worst-case analysis of graph heuristics that already pointed out the important role played 
by the hyperbolicity. For instance, there are approximation algorithms for problems related to distances in graphs — like 
diameter and radius computation [24], and minimum ball covering [25] — whose approximation constant depends on the 
hyperbolicity. Sometimes the approximation factor is a universal constant but the algorithm relies on a data-structure whose 
size is proportional to the hyperbolicity of the network topology [26]. Geometric routing schemes in [15,18,19] do not make 
exception and so have a stretch lower-bounded by the hyperbolicity (the bound is reached by some of them).

There have been measurements to confirm that complex networks such as the graphs of the Autonomous Systems of 
the Internet, social networks and phylogenetic networks all have a low hyperbolicity. We refer to [16,27–31] for the most 
important studies in this area. Additional related work in [32,33] shows that the low hyperbolicity of complex networks 
may be a consequence of some preferential attachment mechanisms. However, we are not informed of any study on the 
hyperbolicity of data center interconnection networks. In this paper, we aim to fill in this gap through a theoretical study 
of their underlying graphs.

Our contributions. In an attempt to confront with the diversity of interconnection network topologies proposed in the 
literature, we relate hyperbolicity with a few graph properties that are frequently encountered in these topologies. Indeed, 
we do not aim to provide a — long and non-exhaustive — listing of unrelated results for each network, but rather to 
exhibit a small number of their characteristics that are strongly related with their metric invariants. In particular, we relate 
hyperbolicity with the symmetries of a graph.

• We prove in Section 3 that for graphs whose center is a k-distance dominating set for some small value of k, the 
hyperbolicity scales linearly with the diameter. This class of graphs strictly contains graphs whose diameter equals the 
radius, a.k.a. the self-centered graphs [34,35]. In particular, it comprises all vertex-transitive graphs (a strict subclass of 
self-centered graphs), as well as edge-transitive graphs. A main consequence of our result is that every interconnection 
network whose topology is based on a Cayley graph has large hyperbolicity.2

• In addition, we prove that similar results hold for graphs admitting an endomorphism such that the distance between 
any vertex and its symmetric image is large. On the way to prove these results, we define a new graph invariant which 
is called weak mobility, that generalizes the so-called graph mobility (e.g., see [37,38]). We use these new results to 
improve our lower-bounds on the hyperbolicity of several interconnection networks.

• For completeness, we also characterize the hyperbolicity of other “symmetric” networks such as de Bruijn, Kautz and 
grid-like graphs. More precisely, we apply different techniques that are based on their shortest-paths distribution so 
that we can prove in Section 4 that they also have a large hyperbolicity. The techniques that are involved in the proofs 
have been introduced in previous papers [39,40], but to the best of our knowledge the way we use them in this work 
is new.

1 In fact, it follows from [20] that for any n-vertex graph G there is an embedding ϕ of G into the Euclidean space (with unbounded dimension) such 
that for every u, v ∈ V (G) we have d(ϕ(u), ϕ(v)) ≤O(

√
log logn) · dG (u, v) + Ô(δ(G) · logn), with δ(G) being the hyperbolicity (the Ô-notation suppresses 

the polyloglog factors). However, it does not seem that hyperbolicity is the most relevant parameter in the study of Euclidean embeddings.
2 Independently from this work, the authors in [36] proved that for any vertex-transitive graph, the hyperbolicity scales linearly with the diameter. 

However, their proof relies on another definition of hyperbolicity, and it is unclear whether the proof can be extended to other graph classes. By contrast, 
our proof yields a tighter lower-bound for hyperbolicity, and it relies on a much simpler and more general argument (i.e., see Theorem 4). Especially, it also 
applies to edge-transitive graphs.
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