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We present theoretical foundations, and a practical implementation, that makes the 
method of Algebraic Dynamic Programming available for Multiple Context-Free Grammars. 
This allows to formulate optimization problems, where the search space can be described 
by such grammars, in a concise manner and solutions may be obtained efficiently. This 
improves on the previous state of the art which required complex code based on hand-
written dynamic programming recursions. We apply our method to the RNA pseudoknotted 
secondary structure prediction problem from computational biology.
Appendix and supporting files available at: http :/ /www.bioinf .uni-leipzig .de /Software /
gADP/
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1. Introduction

Dynamic programming (DP) is a general algorithmic paradigm that leverages the fact that many complex problems of 
practical importance can be solved by recursively solving smaller, overlapping, subproblems [21]. In practice, the efficiency of 
DP algorithms is derived from “memoizing” and combining the solutions of subproblems of a restricted set of subproblems. 
DP algorithms are particularly prevalent in discrete optimization [19, Chp. 15], with many key applications in bioinformatics.

DP algorithms are usually specified in terms of recursion relations that iteratively fill a multitude of memo-tables that 
are indexed by sometimes quite complex objects. This makes the implementation of DP recursions and the maintenance of 
the code a tedious and error prone task [28].

The theory of Algebraic Dynamic Programming (ADP) [29] circumvents these practical difficulties for a restricted class 
of DP algorithms, namely those that take strings or trees as input. It is based on the insight that for a very large class 
of problems the structure of recursion, i.e., the construction of the state space, the evaluation of sub-solutions, and the 
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selection of sub-solutions based on their value can be strictly separated. In ADP, a DP algorithm is completely described 
by a context free grammar (CFG), an evaluation algebra, and a choice function. This separation confers two key advantages 
to the practice of programming: (1) The CFG specifies the state space and thus the structure of the recursion without 
any explicit use of indices. (2) The evaluation algebra can easily be replaced by another one. The possibility to combine 
evaluation algebras with each other [90] provides extensive flexibility for algorithm design. The same grammar thus can 
be used to minimize scores, compute partition functions, density of states, and enumerate a fixed number of sub-optimal 
solutions. Given the set of S of feasible solutions and the cost function f : S → R, the partition function is defined as the 
sum of “Boltzmann factors” Z(β) = ∑

s∈S exp(−β f (s)). The density of states is the number of solutions with a given value 
of the cost function n f (u) = ∣∣{s ∈ S| f (s) = u}∣∣. They are related by Z(β) = ∑

u n f (u) exp(−β f (s)). Both quantities play a key 
role in statistical physics [7]. More generally, they provide a link to the probabilistic interpretation by virtue of the relation 
Prob(s) = exp(−β f (s))/Z .

The strict separation of state space construction and evaluation is given up e.g. in the context of sparsification [62,44], 
where the search space is pruned by means of rules that depend explicitly on intermediate evaluations. Similarly, shortest 
path algorithms such as Dijsktra’s [22] construct the state space in a cost-dependent manner. At least some of these ap-
proaches can still be captured with a suitably extended ADP formalism [62]. A class of DP algorithms to which the current 
framework of ADP is not applicable are those that iterate over values of the cost function, as in the standard DP approach 
to the knapsack problem [3].

Alternative abstract formalisms for dynamic programming have been explored. The tornado software [77] uses a 
“super-grammar” that can be specialized to specific RNA folding models. Much more generally, forward-hypergraphs were 
introduced in [70] as an alternative to grammars to describe dependencies between partial solutions. Inverse coupled rewrite 
systems (ICORES) “describe the solutions of combinatorial optimization problems as the inverse image of a term rewrite 
relation that reduces problem solutions to problem inputs” [31]. So far, there it has remained unclear, however, if and how 
this paradigm can be implemented in an efficient manner.

As it stands, the ADP framework is essentially restricted to decompositions of the state space that can be captured 
by CFGs. This is not sufficient, however, to capture several difficult problems in computational biology. We will use here 
the prediction of pseudoknotted RNA structures as the paradigmatic example. Other important examples that highlight the 
complicated recursions in practical examples include the simultaneous alignment and folding of RNA (a.k.a. Sankoff’s algo-
rithm [79]), implemented e.g. in foldalign [33] and dynalign [59], and the RNA-RNA interaction problem (RIP [2]). 
For the latter, equivalent implementations using slightly different recursions have become available [17,42,43], each using 
dozens of 4-dimensional tables to memoize intermediate results. The implementation and testing of such complicated multi-
dimensional recursions is a tedious and error-prone process that hampers the systematic exploration of variations of scoring 
models and search space specifications. The three-dimensional structure of an RNA molecule is determined by topological 
constraints that are determined by the mutual arrangements of the base paired helices, i.e., by its secondary structure [6]. 
Although most RNAs have simple structures that do not involve crossing base pairs, pseudoknots that violate this simpli-
fying condition are not uncommon [91]. In several cases, pseudoknots are functionally important features that cannot be 
neglected in a meaningful way, see e.g. [23,64,27]. In its most general form, RNA folding with stacking-based energy func-
tions is NP-complete [1,58]. The commonly used RNA folding tools (mfold [101] and the Vienna RNA Package [56]), 
on the other hand, exclude pseudoknots altogether.

Polynomial-time dynamic programming algorithms can be devised for a wide variety of restricted classes of pseudoknots. 
However, most approaches are computationally very demanding, and the design of pseudoknot folding algorithms has been 
guided decisively by the desire to limit computational cost and to achieve a manageable complexity of the recursions 
[75]. Consequently, a plethora of different classes of pseudoknotted structures have been considered, see e.g. [18,78,15,74], 
the references therein, and the book [73]. Since the corresponding folding algorithms have been implemented at different 
times using different parametrizations of the energy functions it is hard to directly compare them and their performance. 
On the other hand, a more systematic investigation of alternative structure definitions would require implementations of 
the corresponding folding algorithms. Due to the complicated structure of the standard energy model this would entail 
major programming efforts, thus severely limiting such efforts. Already for non-pseudoknotted RNAs that can be modeled 
by simple context-free grammars, the effort to unify a number of approaches into a common framework required a major 
effort [77].

Multiple context-free grammars (MCFG) [81] have turned out to be a very natural framework for the RNA folding problem 
with pseudoknots. In fact, most of the pseudoknot classes can readily be translated to multiple context-free grammars 
(MCFG), see Fig. 1(1) for a simple example. In contrast to CFGs, the non-terminal symbols of MCFGs may consist of multiple 
components that must be expanded in parallel. In this way, it becomes possible to couple separated parts of a derivation 
and thus to model the crossings inherent in pseudoknotted structures. Reidys et al. [74], for instance, makes explicit use 
of MCFGs to derive the DP recursions. Stochastic MCFGs were used for RNA already in [50], and a unified view of many 
pseudoknot classes recently has been established in terms of MCFGs [65], introducing a direct connection between MCFGs 
and generating functions.

In computational linguistics, many distinct “mildly context-sensitive grammar formalisms” have been introduced to cap-
ture the syntactic structure of natural language. Dutch and Swiss–German, for example, have non-context-free structures 
[86,88], see Fig. 1(2). Given the constraints of natural languages, the complexity of their non-context free structure is quite 
limited in practice. MCFGs have been used explicitly to model grammars for natural languages e.g. in [88].
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