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a b s t r a c t

With today’s dissemination of embedded systems manipulating sensitive data, it has be-
come important to equip low-level programs with strong security guarantees. Unfortu-
nately, security proofs as done by cryptographers are about algorithms, not about concrete
implementations running on hardware. In this article, we show how to perform security
proofs to guarantee the security of assembly language implementations of cryptographic
primitives. Our approach is based on a framework in the Coq proof assistant that integrates
correctness proofs of assembly programs with game-playing proofs of provable security.
We demonstrate the usability of our approach using the Blum–Blum–Shub pseudorandom
number generator, for which an MIPS implementation for smartcards is shown crypto-
graphically secure.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

With today’s dissemination of embedded systems manipulating sensitive data, it has become important to equip low-
level programs with strong security guarantees. However, despite the fact that most security claims implicitly assume
correct implementation of cryptography, this assumption is never formally enforced in practice. Themain problem of formal
verification of embedded cryptographic software is that, in the current state of research, formal verification remains amajor
undertaking:

(a) Most cryptographic primitives rely on number theory and their pervasive usage calls for efficient implementations. As
a result, we face many advanced algorithms with low-level implementations in assembly language. This already makes
formal proof technically difficult.

(b) Security guarantees about cryptographic primitives is the matter of security proofs, as practiced by cryptographers. In
essence, these proofs aimat showing the security of cryptographic primitives by reduction to computational assumptions.
Formal proofs of such reductions also involve probability theory or group theory.

In fact, formal verification of embedded cryptographic software is even more challenging in that it requires a formal
integration of (a) and (b). To the best of our knowledge, no such integration has ever been attempted so far.

In this article, we address the issue of formal verification of cryptographic assembly codewith security proofs. As pointed
out above, formal verification of cryptographic assembly code and formal verification of security proofs are not the same
matter, even though both dealwith cryptography. As an evidence of thismismatch, one can think of a cryptographic function
such as encryption: its security proof typically relies on a high-level mathematical description, but when laid down in terms
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of assembly code such a function exhibits restrictions due to the choice of implementation. We are therefore essentially
concerned about the integration of these two kinds of formal proofs. We do not question here the theoretical feasibility
of such an integration; rather, we investigate its practical aspects when formal verification is carried out within a proof
assistant based on proof theory.

Indeed, proof assistants based on proof theory, such as Coq [9] or HOL, can be regarded as privileged tools when it comes
to formal verification of security properties. They implement higher order logics that are expressive enough to model and
reason about advanced mathematics as well as precise computation models, and their trusted computing base being small
andwell-understood provides adequate reliability.With such tools, formal verification is by default performed interactively
(bymeans of tactics) but interaction can be automated and intermediate results can be aggregated (in the form of libraries of
lemmas) to facilitate other formal verifications. As a consequence, various frameworks for formal verification of cryptography
using proof assistants based on proof theory have already been proposed: on the one hand, [2,18] for cryptographic assembly
code, and on the other hand, [4–6,20] for security proofs. However, it is not clear how to connect them in practice, or, in other
words, how the formal security proof for a cryptographic primitive relates to its formally verified implementation.Whatever
connection is to be provided between two such frameworks, it has to be developed in a clear way, both understandable by
cryptographers and implementers, and in a reusable fashion, so that new verification efforts can build upon previous ones.

Our main contribution is to propose a concrete approach, supported by a reusable formal framework on top of the Coq
proof assistant [9], for verification of assembly code together with security proofs. As a concrete evidence of usability, we
formally verify a pseudorandom number generator written in assembly for smartcards with a proof of unpredictability.
This choice of application is not gratuitous: this is the first step before verifying more cryptographic primitives, since many
of them actually rely on pseudorandom number generation. To achieve our goal, we extend and integrate two existing
frameworks developed for the Coq proof assistant: one for formal verification of assembly code [2], and another for formal
verification of cryptographic primitives [20]. More precisely, our technical contributions consist in the following:

• We propose an integration in terms of game-playing [24], a popular setting to represent security proofs. We introduce
a new kind of game transformation to serve as a bridge between assembly code and algorithms as dealt with by
cryptographers. This allows for a clear integration, that paves the way for a modular framework, understandable by
both cryptographers and implementers.
• We extend the formal framework for assembly code of [2] to connect with the formal framework for security proofs

of [20]. Various technical extensions are called for, that range from the natural issue of encoding mathematical objects
such as arbitrarily large integers into computer memory, to technical issues such as composition of assembly snippets to
achieve verification of large programs. All in all, it turns out that it is utterly important to provide efficient ways to deal
with low-level details induced by programs being written in assembly. Here, we explain in particular how we deal with
arbitrary jumps in assembly. Concretely, we provide a formalization of the proof-carrying code framework of [23], that
allows us to verify assembly with jumps through standard Hoare logic proofs.
• We provide the first assembly program for a pseudorandom number generator that is formally verified with a security

proof. The generator in question is the Blum–Blum–Shub pseudorandom number generator (hereafter, BBS) [8] that we
implement in the SmartMIPS assembly.

Outline. In Section 2, we introduce the BBS algorithm and provide an assembly implementation. In Section 3, we explain
howwe integrate formally proofs of functional correctness for assembly codewith game-based security proofs. In Section 4,
we explain our formalization of the proof-carrying code framework of [23], that facilitates formal proof of functional
correctness of assembly code. In Section 5, we explain the formal security proof of BBS in assembly, from its proof of
functional correctness to the implementation step that enables integration with the security proof from [21]. In Section 6,
we validate our formalization by producing automatically a SmartMIPS binary and experimenting its execution. In Section 7,
we comment on technical aspects of the Coq formalization. In Section 8, we comment on related work, and conclude and
comment on future work in Section 9.

2. The BBS pseudorandom number generator

2.1. The BBS algorithm

The security of the Blum–Blum–Shub pseudorandom number generator [8] is based on mathematical properties of
integersmodulo.We recall some basic notions of number theory: an integer is a quadratic residuemodulom if it is congruent
to a square modulo m; the Legendre of an integer (modulo a prime number) is +1 if it is a quadratic residue, and −1
otherwise; the Jacobi of an integer modulo m is the product of its Legendres for each prime factor of m. BBS exploits the
quadratic residuosity problem: the problem of deciding for Z∗m (the multiplicative group of integers modulo m), where m is
the product of two distinct odd primes, whether elements with Jacobi+1 are in

QRm
def
= {x ∈ Z∗m|∃y ∈ Z∗m. y2 (mod m) = x}.

The quadratic residuosity assumption is the assumption that this problem is intractable ([10], ch. 6). BBS exploits the quadratic
residuosity assumption in the particular case ofm being a Blum integer, i.e., the product of two distinct odd primes congruent
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