
Science of Computer Programming 77 (2012) 1151–1177

Contents lists available at SciVerse ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

Refinement-oriented models of Stateflow charts
Alvaro Miyazawa ∗, Ana Cavalcanti
Department of Computer Science, The University of York, York, YO10 5GH, United Kingdom

a r t i c l e i n f o

Article history:
Available online 3 August 2011

Keywords:
Simulink
Circus
Formal semantics
Verification
Tools

a b s t r a c t

Simulink block diagrams are widely used in industry for specifying control systems, and
of particular interest and complexity are Stateflow blocks, which are themselves defined
by separate charts. To make formal reasoning about diagrams and charts possible, we
need to formalise their semantics; for the formal verification of their implementations,
a refinement-based semantics is appropriate. An extensive subset of Simulink has been
formalised in a language for refinement, namely, Circus, and here, we propose an approach
to cover Stateflow charts. Our models are distinctive in their operational nature, which
closely reflects the informal description of the Stateflow (simulation) semantics. We
describe, formalise, and automate a strategy to generate our Circus models. The result is a
solid foundation for reasoning based on refinement.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

MATLAB Simulink [1] is a graphical notation that supports the specification of control systems at a level of abstraction
convenient for engineers; it is, for example, widely used in the avionics and automotive industries. Stateflow [2] is part
of Simulink, and consists of a statechart notation used to define Simulink blocks. Simulink diagrams are typically used to
specify aspects of a system that can be modelled by differential equations relating inputs and outputs. On the other hand,
Stateflow charts frequently model the control aspects, like, for instance, changes in modes of operations triggered by events
and conditions. Both Simulink and Stateflow provide extensive tool support to handle diagrams; there are facilities for
simulation and analysis [1,2], verification, validation and testing [3,4], code generation [5,6], and prototyping [7].

Many of the systems specified and designed using Simulink diagrams and Stateflow charts are safety-critical systems, and
various certification standards [8,9] recommend the use of formal methods for the specification, design, development and
verification of software. This suggests that formal techniques that support graphical notations like Simulink and Stateflow
are extremely useful, if not essential.

We are concerned with the assessment of the correctness of implementations of Stateflow charts: we want to be able
to assert that a program correctly implements a chart. This has been frequently dealt with by approaches based on the
verification of automatic code generators [10–12]. The approach that we pursue is orthogonal, and can be used in situations
where code generators are not applicable or convenient. For instance, frequent updates to the generator have a heavy impact
on the cost of its verification. In addition, customised hardware or performance requirements often impose the need for
changes in code generated.

In this paper,we provide a formal semantics of Stateflow charts suitable for reasoning based on refinement. It iswritten in
a way that facilitates validation, and integration of models of Simulink diagrams. With this, we set the foundation not only
for analysing complex diagrams, but also for verifying the correctness of systems specified using both standard Simulink
blocks and Stateflow charts. Although we do not tackle program verification here, the models that we present can be

∗ Corresponding author.
E-mail addresses: alvarohm@cs.york.ac.uk, alvarohm@gmail.com (A. Miyazawa), Ana.Cavalcanti@cs.york.ac.uk (A. Cavalcanti).

0167-6423/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2011.07.007

http://dx.doi.org/10.1016/j.scico.2011.07.007
http://www.elsevier.com/locate/scico
http://www.elsevier.com/locate/scico
mailto:alvarohm@cs.york.ac.uk
mailto:alvarohm@gmail.com
mailto:Ana.Cavalcanti@cs.york.ac.uk
http://dx.doi.org/10.1016/j.scico.2011.07.007


1152 A. Miyazawa, A. Cavalcanti / Science of Computer Programming 77 (2012) 1151–1177

the starting point, for instance, to extend the refinement-based verification technique for implementations of Simulink
diagrams presented in [13].

Our semantics of Stateflow charts is based on the Circus notation [14], which is a refinement language that combines
Z [15], CSP [16], Dijkstra’s language of guarded commands [17], and Morgan’s specification statement [18]. Circus has a for-
mal semantics given in terms of the Unifying Theories of Programming [19], and a refinement strategy that integrates differ-
ent theories of refinement (action and process refinement). Circus supports the abstract specification of state-rich reactive
systems and provides a refinement calculus [20] that allows the verification of implementations. It is supported by various
tools, such as a type-checker [21], a refinement editor [22], a translator from Circus to Java [23], and a theorem prover [24].

Cavalcanti et al. [25] define a semantics for Simulink diagrams in Circus. It builds upon the Z-based approach described in
Arthan et al. [26], and Adams and Clayton [27], and extends it to cover a larger subset of Simulink, but not Stateflow blocks.
Therefore, aCircusmodel of Stateflow charts is a natural extension of previouswork, allowing for the verification of a broader
variety of control law diagrams. By using Circus as a specification language, we provide support to reason formally about the
model, to verify code of proposed implementations, and to integrate the model with existing models of Simulink diagrams.

As far as we know, our modelling technique is unique in that it covers a wide range of Stateflow constructs that have
not been treated before, such as history junctions, unrestricted transitions, and multi-dimensional data. Additionally, the
models are specified in a formal notation that has been extensively used for the verification of programs, namely Circus.
It is possible to apply the Circus refinement calculus to reason about our models and their implementations. Finally, our
models can be integrated with Circusmodels of Simulink diagrams. All this caters for a very comprehensive coverage of the
Simulink/Stateflow notation.

Because the established semantics of Stateflow is only available through simulation or in an informal description in the
StateflowUser’s Guide [2],weprovide a formalmodel based on the expectedbehaviour of charts during simulation. There is no
way of formally comparing ourmodel to the semantics encoded in the simulator (without access to the simulator’s code), and
this is a problem inherent to the formalisation of any language that does not have a well established formal model already.

In order to circumvent this issue, we have validated our model through alternative approaches. We have used
inspection: systematic comparison of our formal model to the informal descriptions found in the Stateflow documentation.
In particular, to facilitate validation, our model is constructed in a way that provides a direct correspondence with these
descriptions. We have also used simulation: comparing traces of the simulation tool to traces of our models. Defining and
implementing rules to translate Stateflow charts to Circus, and applying them to case studies, has also provided further
validation. Finally, we are currently applying the Circus refinement calculus to verify chart implementations based on our
model; this effort validates the modelling technique and its appropriateness for reasoning.

Themain contributions of this work are an approach tomodelling Stateflow charts using a state-rich process algebra like
Circus, the formalisation of a strategy to translate Stateflow to Circusmodels, and the s2c tool that implements this strategy
and generates Circus models automatically. These models are partitioned in two components that capture separately the
semantics of Stateflow charts and the structure of a particular chart. The formalisation of the translation strategy is encoded
in Z and consists of a formal syntax of Stateflow charts, well-formedness conditions, an embedding of Circus in Z, and
a set of translation rules defined as functions from well-formed elements of the syntax of Stateflow charts to elements
of the Circus notation. The s2c tool takes a textual representation of one or more charts, and automatically produces a
Circus specification containing the corresponding models.

This article is structured as follows. Section 2 introduces the Stateflow and Circus notations. Section 3 presents our
approach to construct formal models of Stateflow charts; Section 4 introduces the formalisation of the translation rules;
Section 5 discusses the implementation of the translation rules in the s2c tool, and describes the validation of the proposed
approach. Section 6 reviews our contributions, discusses the limitations of our work, examines related work, and proposes
future directions for this work.

2. Preliminaries

In this section, we introduce the notations that form the basis for this work: Stateflow and Circus.

2.1. Stateflow

A Simulink diagram consists of blocks and wires connecting the inputs and outputs of the blocks. Its execution is carried
out in a cyclic fashion, in which the blocks are executed in an order determined by the wiring of the diagram, and at a time
determined by simulation time steps. Stateflow provides a new type of Simulink block, namely a Stateflow chart. This is a
graphical notation that supports the specification of state transition systems. It is a variant of Harel’s statecharts [28], which
extends standard state-transition systems by introducing a number of features, such as hierarchy and parallelism.

Fig. 1 shows a Stateflow chart adapted from an example supplied with the Simulink/Stateflow tool; it is part of themodel
of an automatic transmission controller. This chart specifies a system thatmonitors the speed of a vehicle, and changes gears
appropriately. To decide whether or not to change gears, it calculates upper and lower thresholds based on the current gear
and the engine throttle.

A Stateflow chart is the root for the execution of the corresponding Stateflow model; it encapsulates the states,
transitions, junctions, functions, data and events that characterise it. The only means of interaction with the Simulink



Download	English	Version:

https://daneshyari.com/en/article/435234

Download	Persian	Version:

https://daneshyari.com/article/435234

Daneshyari.com

https://daneshyari.com/en/article/435234
https://daneshyari.com/article/435234
https://daneshyari.com/

