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An undirected graph G = (V , E) has metric dimension at most k if there is a vertex set 
U ⊆ V such that |U | ≤ k and ∀u, v ∈ V , u �= v , there is a vertex w ∈ U such that dG (w, u) �=
dG (w, v), where dG (u, v) is the distance (the length of a shortest path in an unweighted 
graph) between u and v . The metric dimension of G is the smallest integer k such that 
G has metric dimension at most k. A cactus block graph is an undirected graph whose 
biconnected components are either cycles or complete graphs. We present a linear time 
algorithm for computing the metric dimension of cactus block graphs.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

An undirected graph G = (V , E) has metric dimension at most k if there is a vertex set U ⊆ V such that |U | ≤ k and 
∀u, v ∈ V , u �= v , there is a vertex w ∈ U such that dG (w, u) �= dG(w, v), where dG (u, v) is the distance (the length of a 
shortest path in an unweighted graph) between u and v . The metric dimension of G is the smallest integer k such that 
G has metric dimension at most k. The metric dimension was independently introduced by Harary and Melter [8] and 
Slater [20].

If for three vertices u, v, w , dG(w, u) �= dG (w, v), then we say that u and v are resolved by vertex w . If every pair of 
vertices is resolved by at least one vertex of a vertex set U , then U is a resolving set for G . The metric dimension of G is the 
size of a minimum resolving set. Such a smallest resolving set is also called a resolving basis for G . In certain applications, 
the vertices of a resolving set are also called landmark nodes or anchor nodes. This is a common naming particularly in the 
theory of sensor networks.

Determining the metric dimension of a graph is a problem that has an impact on multiple research fields such as 
chemistry [2], robotics [13], combinatorial optimization [19] and sensor networks [11]. Deciding whether a given graph G
has metric dimension at most k for a given integer k is known to be NP-complete for general graphs [7], planar graphs [6], 
and even Gabriel unit disk graphs [11].

There are several algorithms for computing the metric dimension in polynomial time for special classes of graphs, as 
for example for trees [2,13], wheels [10], grid graphs [15], k-regular bipartite graphs [18], amalgamation of cycles [12]
and outerplanar graphs [6]. The approximability of the metric dimension has been studied for bounded degree, dense, and 
general graphs in [9]. Upper and lower bounds on the metric dimension are considered in [1,3] for further classes of graphs.
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Courcelles MSOL-theory [5] cannot be applied directly to solve the metric dimension problem on clique-width or tree-
width bounded graphs by dynamic programming techniques. This is because the decision version of the metric dimension 
for each k ≥ 2 cannot be defined in monadic second order logic, neither of type 1 with quantifications over vertices and 
vertex sets nor of type 2 with quantifications over vertices, edges, vertex sets and edge sets. This follows, for example, 
from the observation that there is an infinite number of 1-terminal graphs mutually not replaceable with respect to metric 
dimension 2, see Fig. 16, which contradicts the character of MSOL graph properties, see [4].

In this paper, we introduce a concept that allows us to compute the metric dimension of a cactus graph G in linear 
time. An undirected graph G is a cactus graph, if every biconnected component of G is a cycle, or equivalently, if every 
edge belongs to at most one simple cycle. Cactus graphs are, for example, used to model electronic circuits with specific 
properties [16] and have recently been considered for genome comparison [17].

The main idea of our solution is based on the construction of a forest F for G with the following properties. Every edge 
e of forest F represents a vertex set V e of G such that if two edges e1 and e2 have a common vertex then every resolving 
set for G contains at least one vertex of V e1 or V e2 . The minimum size of a resolving set can then be determined by the 
maximum size of a matching for F plus a certain number of additional vertices.

A block graph is a graph whose biconnected components are complete graphs. We also show that complete biconnected 
components can be substituted by single vertices without altering the metric dimension of the graph. In conjunction with 
the results for cactus graphs this yields a linear time algorithm for determining the metric dimension of cactus block graphs.

Two remarks about similar work: The paper of Iswadi et al. [12] considers only a very special case of cactus graphs 
without leafs and pendant vertices. The paper of Díaz et al. [6] analyzes outerplanar graphs. They show that there is a 
polynomial time algorithm for computing the metric dimension of outerplanar graphs with a running time of O (n12). The 
results of these papers do not imply a linear time algorithm for determining the metric dimension of cactus block graphs.

This paper is organized as follows. In Section 2, we introduce some basic definitions, in Section 3, we recall how to 
compute the metric dimension of trees, in Section 4, we consider sun graphs, and in Section 5, we finally analyze cactus 
block graphs. Conclusions are given in Section 6.

2. Basic definitions

We consider undirected graphs G = (V , E), where V is the set of vertices and E ⊆ {{u, v} | u, v ∈ V , u �= v} is the set 
of undirected edges. A graph G ′ = (V ′, E ′) is a subgraph of G = (V , E) if V ′ ⊆ V and E ′ ⊆ E . It is an induced subgraph of G , 
denoted by G|V ′ , if E ′ = E ∩ {{u, v} | u, v ∈ V ′}. A path of length k between two vertices u, v ∈ V is a sequence of k + 1
vertices u1, . . . , uk+1 ∈ V such that u1 = u, {ui, ui+1} ∈ E for i = 1, . . . , k, and uk+1 = v . Graph G = (V , E) is connected if 
there is a path between every pair of vertices. The distance dG(u, v) between two vertices u, v in a graph G is the smallest 
integer k such that there is a path of length k between u and v . A vertex set U ⊆ V is a resolving set for a connected 
graph G if for every vertex pair u, v ∈ V , u �= v , there is a vertex w ∈ U such that dG (w, u) �= dG (w, v). A resolving set of 
minimum size is called a resolving basis for G . A connected graph G = (V , E) has metric dimension k if there is a resolving 
basis for G of size k.

Lemma 2.1. Let G = (V , E) be a connected graph, V 1, V 2 ⊆ V , V 1 ∪ V 2 = V , and V 1 ∩ V 2 = {u} for some vertex u such that every 
path between two vertices u1 ∈ V 1 and u2 ∈ V 2 contains vertex u. If V 1 contains more than the one vertex u and if V 1 is not a path 
with end vertex u, then every resolving set for G contains at least one vertex of V 1 \ {u}.

Proof. If V 1 contains more than the one vertex u, if V 1 is not a path with end vertex u, and if G is connected then there 
are at least two distinct vertices ui, u j ∈ V 1 \ {u} with dG(ui, u) = dG(u j, u). All paths between vertices from V 1 and V 2 pass 
vertex u. That is, for all vertices v ∈ V 2 we have dG(ui, v) = dG (u j, v) and thus every resolving set for G has to contain at 
least one vertex from V 1 \ {u}. �

A connected subgraph of G of maximal size is called a connected component of G . A vertex u ∈ V is a separation vertex if 
G|V \{u} (the subgraph of G induced by V \ {u}) has more connected components than G .

Lemma 2.2. Every connected graph G = (V , E) has a resolving basis without separation vertices.

Proof. Let U ⊆ V be a resolving basis for G , us ∈ U be a separation vertex of G , and V 1, . . . , Vk , k > 1, be the vertex sets of 
the connected components of G|V \{us} (the subgraph of G induced by V \ {us}).

If a vertex set V i ∪ {us}, 1 ≤ i ≤ k, is a path in G with end vertex us , then (U \ {us}) ∪ {v} is a resolving basis for G , 
where v is the other end vertex of path V i ∪ {us}, and thus v is no separation vertex.

Assume now that no vertex set V i ∪ {us}, 1 ≤ i ≤ k, is a path in G with end vertex us . Then by Lemma 2.1, every set V i , 
1 ≤ i ≤ k, contains at least one vertex of U . Let u1, u2 be two vertices of V such that dG (u1, us) �= dG (u2, us).

1. If both vertices u1 and u2 are in the same set V i for some i, 1 ≤ i ≤ k, then there has to be a vertex v ∈ U \ (V i ∪ {us})
such that dG (u1, v) �= dG(u2, v).
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