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A finite deterministic automaton A = (Q , �, δ) is k-compressible if there is a word w ∈
�+ such that the image of the state set Q under the natural action of w is reduced 
by at least k states. In such case w is called a k-compressing word for A. It is known 
that, for any alphabet � and any k ≥ 2, there exist words that are k-compressing for each 
k-compressible automaton with the input alphabet �. Such words are called k-collapsing. 
It has been proved that recognizing 2-collapsing words over a 2-element alphabet may be 
done in polynomial time, while recognizing 2-collapsing words over an alphabet of size 
n ≥ 3 is co-NP-complete. The computational complexity of recognizing k-collapsing words 
with k ≥ 3 over an n-element alphabet has remained open. In this paper we prove that this 
remaining problem is co-NP-complete in the simplest case with k = 3 and n = 2.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let A = (Q , �, δ) be a complete deterministic automaton with the set of the states Q , the input alphabet �, and 
the transition function δ : Q × � → Q . For each α ∈ �, the function δ induces a transformation on Q , which we denote 
qα = δ(q, α), for all q ∈ Q . This action extends naturally into the action of words w ∈ �+ on Q denoted by qw = δ(q, w). 
We are interested in the images Q w = {s ∈ Q : s = qw for some q ∈ Q } for various words w .

If for a word w ∈ �+ , |Q w| = 1, i.e. the image consists of a single state, then the word w is called a synchronizing (or 
reset) word for A, and A itself, in such a case, is called a synchronizing automaton. Reset words and synchronizing automata 
have been intensively studied from the very beginning of the theory of finite automata. In particular, a lot of research has 
been connected with the Černý conjecture, which states that for each synchronizing automaton A with n states there exists 
a reset word of length at most (n − 1)2. The conjecture is still open in its generality, and is considered one of the most 
longstanding open problems in automata theory (see [11] for general motivation and the excellent survey of the field).

One of the directions of research in this area focuses on k-compressing words. Given k ≥ 1, a word w ∈ �+ is called 
a k-compressing word for A, if |Q \ Q w| ≥ k. In such a case, we say also that w k-compresses A. Clearly, if |Q | = n, then 
w is synchronizing if and only if it is (n − 1)-compressing for A. If A has a k-compressing word, then A itself is called 
k-compressible. Given an alphabet �, a word w ∈ �+ that is k-compressing for each k-compressible automaton over the 
input alphabet � is called k-collapsing (over �). The original motivations for the interest in such words come from algebra 
and combinatorics (see, e.g., [1]). In [10], using algebraic terminology, it is proved that for each positive integer k, and 
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each finite alphabet �, there exists a k-collapsing word over � by exhibiting an effective construction of such words. In 
automata theory, the interest in such words comes from the fact that they can be seen as universal testers whose action on 
the set of states of an automaton exposes whether or not the automaton is k-compressible. Recognizing k-collapsing words 
is, however, not easy (except for trivial case k = 1).

In [8], it is proved that the membership of a given word w ∈ �+ in the language of k-collapsing words is decidable, 
for any fixed k ≥ 1. The decision procedure is in the class co-NP and requires linear space, which shows that the language 
of k-collapsing words is context-sensitive. In [9], it is shown that it is not context-free even in the simplest nontrivial 
case of the language of 2-collapsing words over a 2-letter alphabet. Most results so far concern 2-collapsing words. In 
particular, 2-collapsing words (over an alphabet of arbitrary size) have been characterized in [1], and in [5]. From the first 
characterization in [1] (that has a group theoretical flavor), a non-deterministic polynomial time algorithm to recognize 
whether a word w ∈ �+ is 2-collapsing was derived in [2]. A refinement of this algorithm was used in [3] to give the list 
of the shortest 2-collapsing words on a 3-letter alphabet. The second characterization in [5] (which is in terms of solving 
systems of permutation conditions) is used in [6] to show that the recognizing 2-collapsing words over an alphabet of 
size ≥ 3 is co-NP-complete. On the other hand, recognizing 2-collapsing words over a 2-element alphabet may be done in 
polynomial time [5]. In view of these two results a question arises whether for k ≥ 3, k-collapsing words over a 2-element 
alphabet can also be recognized in polynomial time. This natural question has remained open so far. In this paper we show 
that the answer is negative (assuming NP �= P ). We prove that the problem of deciding whether a word w ∈ {α, β}+ is 
3-collapsing is co-NP-complete.

The difficulty in this case is that we have no characterization of 3-collapsing words similar to those for the case of 
2-collapsing words. Yet, we have a natural classification of the 3-compressible automata on two input letters [4], and we 
can see that the problem looks different in different classes. For some classes it is easy to decide whether a word w
3-compresses all the automata in the class. There is however at least one class, where this problem leads to solving a 
system of transformation conditions, similar to permutation conditions in [6], and it seems that similar methods could be 
used to prove its computational hardness. So, our idea is to restrict the latter problem concerning solving transformation 
conditions, so that on the one hand, we could prove its NP-hardness, and on the other hand, we could still transform it 
back to our original problem.

This restriction is done in a few steps in Section 2. As a result we formulate a certain technical computational problem 
(*) concerning solving transformation conditions, and demonstrate that it reduces in polynomial time to the problem of 
deciding whether a given word w over a 2-element alphabet is 3-collapsing. The second part of the paper, Section 3, is 
devoted to prove that the problem (*) is NP-hard. Here we try to apply the method of the proof in [6]. Yet, since now we 
consider systems of transformation conditions, rather then permutation conditions, we need substantial modifications and 
new ideas to achieve the aim.

We note that our result does not settle the case of k-collapsing words over n-element alphabets for any pair with 
k, n > 2. Of course, our results allow to conjecture that in each such case the problem is co-NP-hard all the more, but we 
notice that our proof does not admit any simple extension to the case of larger k or n.

2. Three-compressible automata

In this section we establish facts on 3-compressible automata allowing us to reduce our task to proving NP-completeness 
of a certain problem concerning solving a system of transformation conditions.

This reduction is done in a few steps. First, in Subsection 2.1, we introduce some special terminology and provide 
a simple classification of 3-compressible automata over a 2-element alphabet. In Subsection 2.2, we distinguish one of 
the classes, and give a characterization of words 3-compressing all automata in this class in terms of solving a system 
of transformation conditions. Next, in Subsection 2.3, we restrict our consideration to the smallest class D, where the 
characterization obtained in the previous subsection has a relatively simple formulation. Then, using methods and results 
of [4], we find a single word wD that 3-compresses all 3-compressible automata (over 2 letters) not in the class D, which 
is used to transform the problem to decide whether a word 3-compresses all automata in D to the problem to decide 
whether a word is 3-collapsing. In Subsection 2.4 we formulate the technical computational problem (*) concerning solving 
transformation conditions, and prove that it reduces in polynomial time to the problem of deciding whether a given word 
over a 2-element alphabet is not 3-collapsing.

2.1. Preliminaries

We deal with automata over a 2-element alphabet � = {α, β}. The letters α and β are identified with transformations 
they induce on the set Q of the states. The image of q ∈ Q by a letter (transformation) α is denoted qα, and qα−1 denotes 
the inverse image of q by α. Each word w = α1α2 . . . αt over � is identified with the transformation it induces.

We use a special notation for concrete transformations α (similar to well-known permutation notation), where round 
brackets (x1x2 . . . xt) denote a cycle: x1α = x2, . . ., xt−1α = xt , xtα = x1, and square brackets [x1x2 . . . xt] denote a path: 
x1α = x2, . . . , xt−1α = xt . This notation is not unique: for example [123][42](357) = [12][423](357). Yet, we always write 
full cycles, and refer to them as the cycles of α, and usually omit all the fixed points, i.e. the cycles of length 1. If x is an 
element of a cycle in α, then we write Cycα(x) to denote the cycle containing x, or the set of elements in this cycle, and 
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