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We study the descriptional complexity of regular languages that are definable by 
deterministic regular expressions, i.e., we examine worst-case blow-ups in size when 
translating between different representations for such languages. As representations 
of languages, we consider regular expressions, deterministic regular expressions, and 
deterministic finite automata. Our results show that exponential blow-ups between these 
representations cannot be avoided. Furthermore, we study the descriptional complexity of 
these representations when applying boolean operations. Here, we start by investigating 
the closure properties of such languages under various language-theoretic operations such 
as union, intersection, concatenation, Kleene star, and reversal. Our results show that 
languages that are definable by deterministic regular expressions are not closed under any 
of these operations. Finally, we show that for all these operations except the Kleene star 
an exponential blow-up in the size of deterministic regular expressions cannot be avoided.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Deterministic or one-unambiguous regular expressions (henceforth, DREs) have been a topic of research since they were 
formally defined by Brüggemann-Klein and Wood [2]. Their origins lie in the ISO standard for the Standard Generalized 
Markup Language (SGML) where they were introduced to ensure efficient parsing. Today, the prevalent schema languages 
for XML data, such as Document Type Definition (DTD) and XML Schema, require that the regular expressions in their spec-
ification are deterministic. From a more foundational point of view, one-unambiguity is a natural manner in which to define 
determinism in regular expressions. As such, several decision problems behave better for deterministic regular expressions 
than for general ones. For example, language inclusion for regular expressions is PSPACE-complete but is tractable when 
the expressions are deterministic. Unfortunately, not every regular language can be expressed by a deterministic expression, 
i.e., not every regular language is DRE-definable. The canonical example for such a regular language is L((a + b)∗a(a + b)), 
see [2].

Although DRE-definable languages are rather widespread and have been around for quite some time, they are not yet 
well-understood. This motivates us to study their foundational properties. In particular, we investigate the differences in 
the descriptional complexity between regular expressions (REs), deterministic regular expressions (DREs), and deterministic 
finite automata (DFAs). Our initial motivation for this work was an unproved claim in [2] which states that, for expressions 
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of the form �∗w , where w is a word over alphabet �, every equivalent DRE is at least exponentially larger than the length 
of w . We proved that this claim is indeed true in the conference version of this work [25], but the proof turned out to be 
rather non-trivial. The main challenge was that languages of the form �∗ w have polynomial-size REs and DFAs, so one has 
to develop new techniques for proving lower bounds on the size of DREs. In this article (Section 3), we give two different 
proofs showing the unavoidable exponential blow-up when translating an RE to a DRE. The first one proves that it cannot 
be avoided even for finite languages. The latter uses a more general technique which gives more insights in the structure of 
DRE-definable languages and their DREs.

Another set of contributions in this paper is a study of the effect of language-theoretic operations on languages that are 
definable by a DRE. In particular, we consider union, intersection, difference, concatenation, Kleene star, and reversal, for 
unary and arbitrary alphabets. Several of these operations are relevant in XML schema management [9,29]. We provide a 
complete overview of the closure properties of DRE-definable languages under these operations in Section 4. Afterwards, 
in Section 5, we briefly investigate the state complexity of minimal DFAs for DRE-definable languages. Here, state complexity
refers to the number of states of the minimal DFA without the sink state. The main reason why we briefly consider state 
complexity is because we want to provide results that are directly comparable with the results on state complexity in [16,
30,33]. That is, the first part of Section 5 lists the increase in state complexity when performing operations on DFAs for 
DRE-definable languages, if the result of the operation is also DRE-definable. In the second part of Section 5, we study 
a similar question for DREs. That is, what is the descriptional complexity of DREs that are obtained by performing the 
aforementioned operations on DREs? Here, we show that for all these operations except the Kleene star an exponential 
blow-up cannot be avoided when applying the operation on two DREs.

Related work Deterministic regular expressions have recently been investigated from several perspectives [6,12,26,27]. Groz 
and Maneth proved that the membership problem (is a given word in the language of a given DRE?) can be solved in time 
O (m + n log logm), where n is the size of the word and m the size of the expression [12]. The DRE-definability problem asks 
whether a given regular expression or non-deterministic automaton defines a language that can be expressed by a DRE and 
was recently proved to be PSPACE-complete [6,26].

Deterministic regular expressions with counters are also a topic of investigation [5,11,17,20,21], since these expressions 
are the ones used to define content models in XML Schema. In fact, determinism for regular expressions with counters 
can be defined in different ways (weak determinism and strong determinism) [11]. While the expressiveness of strongly 
deterministic expressions with counting is the same as DREs, the weakly deterministic expressions, which are the ones used 
in XML Schema, are more expressive [11]. However, weakly deterministic regular expressions with counting still cannot 
define all regular languages [11]. It was recently shown that it can be decided if the language of a given finite automaton is 
expressible by a weakly deterministic regular expression with counting [23].

In this article we focus on descriptional complexity of DREs. Research on descriptional complexity of regular languages 
focused mainly on REs and DFAs. It is well-known that an exponential blow-up cannot be avoided when translating an 
RE into a DFA [16]. Ehrenfeucht and Zeiger [7] proved that there also exist DFAs which are exponentially more succinct 
than each equivalent RE. Gruber and Holzer [13,15] showed that there exist certain characteristics of automata which make 
equivalent regular expressions large. However, these characteristics cannot naïvely be transferred to DREs. For example, the 
languages used in the literature for proving lower bounds on the size of REs (e.g., [7,13,15]) are not definable by DREs.

The state complexity of boolean operations on DFAs is studied in [22,28,30,32,33], where in [30] the focus is on unary 
languages. In Section 5.1 we see that many results in [33] directly apply for DRE-definable languages since they concern 
finite languages and every finite language is DRE-definable [1].

Gelade and Neven [10] and Gruber and Holzer [14] independently examined the descriptional complexity of comple-
mentation and intersection for REs. They showed that the size of the smallest RE for the intersection of a fixed number 
of REs can be exponential; and that the size of the smallest RE for the complement of an RE can be double-exponential. 
Furthermore, these bounds are tight. Gelade and Neven also investigate these operations on DREs and proved that the ex-
ponential bound on intersection is also tight when the input is given as DREs instead of REs [10]. Moreover, they proved 
that the complement of a DRE can always be described by a polynomial-size RE. However, in their proofs, the languages of 
the resulting REs are not DRE-definable. Concatenation and reversal operations on regular languages are studied in [3,18,19,
31,34], where in [34] also languages over unary alphabets are examined.

2. Definitions

By � we always denote a finite alphabet of symbols. A (�-)word w over alphabet � is a finite sequence of symbols 
a1 · · ·an , where ai ∈ � for each i = 1, . . . , n. The set of all �-words is denoted by �∗ . The length of a word w = a1 · · ·an

is n and is denoted by |w|. The empty word is denoted by ε. A (word) language L is a set of words. For two languages L1
and L2, we define the concatenation L1 · L2 as the set {v w | v ∈ L1 ∧ w ∈ L2}. By Li with i ∈ N we denote the concatenation 
L · · · L of i-times the language L.

A (deterministic, finite) automaton (or DFA) A is a tuple (Q , �, δ, q0, F ), where Q is a finite set of states, the transition 
function δ : Q ×� � Q is a partial function, q0 is the initial state, and F ⊆ Q is the set of accepting states. We say that the 
aforementioned transition is q1-outgoing, q2-incoming, or a-labeled. The run of A on word w = a1 · · ·an is a sequence q0 · · ·qn

where, for each i = 1, . . . , n, δ(qi−1, ai) = qi . The word w is accepted by A if the run is accepting, i.e., if qn ∈ F . By L(A) we 
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