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Restrictions of reversal-bounded multicounter machines are studied; in particular, those 
that cannot subtract from any counter until it has reached the end of the input. It is proven 
that this does not alter the languages accepted when the machines are nondeterministic. 
When the machines are deterministic, the languages (denoted by eDCM) are shown to 
coincide with those accepted by deterministic Parikh automata, but are strictly contained 
in the class of languages accepted by machines without this condition. It then follows 
that all commutative semilinear languages are in this restricted class. A number of 
decidability and complexity properties are shown, such as the ability to test, given a 
deterministic pushdown automaton (even if augmented by a fixed number of reversal-
bounded counters), whether it is commutative. Lastly, this deterministic family, eDCM, is 
shown to be the smallest family of languages closed under commutative closure, right 
quotient with regular languages and inverse deterministic finite transductions.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The commutative closure of a language L, comm(L), is the language of all words obtained by permuting the positions of 
the letters of all words in L. A language L is then commutative if comm(L) = L. The Parikh map of a word (and a language 
respectively) is the vector representing the number of copies of each letter in the word (the set of Parikh vectors of all 
words). These provide an equivalent criterion for commutative closure; comm(L) is the set of all words with the same Parikh 
vector as a word of L. Thus, studying the set of Parikh vectors is closely related to commutativity. It was found by Parikh [1]
that every context-free language has a so-called semilinear (defined formally below in Section 2) Parikh map. The semilinear 
criteria can be equivalently expressed as, every language with a semilinear Parikh map has the same commutative closure 
as a regular language [2]. However, it is quite easy to create commutative languages that are not regular (nor context-free), 
such as {w | w has the same number of a’s, b’s and c’s}.

There is a model of automata that can accept every commutative semilinear language; namely the family of one-way 
nondeterministic reversal-bounded multicounter languages (NCM) [3,4]. In [5], it was shown that NCM is in fact the small-
est trio (closed under λ-free homomorphism, inverse homomorphism and intersection with regular languages) that is also 
closed under taking commutative closures. NCM is equal to the family of languages accepted by another model, Parikh au-
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tomata [6]. It has also been shown that languages accepted by deterministic Parikh automata are closed under commutative 
closure.

Commutative semilinear languages (referred to as COM-SLIP in [7]) have also been studied. Since every semilinear 
language has the same commutative closure as a regular language, and the fact that all regular languages can be accepted 
by deterministic Parikh automata, it follows that COM-SLIP is contained inside the deterministic Parikh languages. The 
family of commutative semilinear languages has been extended to their closure under union and concatenation (referred 
to as COM-SLIP·,∪ [7]), and these languages are also strictly contained in NCM, since NCM is closed under union and 
concatenation.

In this paper, one-way deterministic reversal-bounded multicounter languages (DCM) are studied, and a new restriction 
is introduced, eDCM, that are DCM machines that cannot subtract from any counter until hitting the end of the input. It 
is shown that this new family coincides with deterministic Parikh automata, and it therefore follows that both families are 
strictly contained inside DCM, and all commutative semilinear languages are contained in both. We then use the eDCM
model to demonstrate a new language that can be accepted in DCM with only one counter that makes one counter reversal 
that is not in eDCM.

As these families are contained in the family of DCM languages, we explore a number of decidability and complexity 
properties that NCM does not have, such as decidable containment and equivalence problems. Several properties of commu-
tative semilinear languages become easily decidable. For example, it is possible to test for either containment or equivalence 
between the commutative closures of any effectively semilinear languages (or between the commutative closure of any ef-
fectively semilinear language and an arbitrary DCM language). It is also shown that it is possible to decide whether an 
arbitrary DPCM language (a language accepted by a deterministic machine that has an unrestricted pushdown plus a fixed 
number of reversal-bounded counters) is commutative, and similarly for other deterministic automata models accepting 
semilinear languages. Also, testing membership in DCM is computable in logarithmic space on a deterministic Turing ma-
chine, and thus complexity theoretic results are presented for Turing Machines accepting semilinear languages. It is then 
shown that the concatenation closure of commutative semilinear languages is not always a DCM language, and therefore, 
the COM-SLIP·,∪ languages are not contained in DCM; they are incomparable.

Finally, it is shown that eDCM (and hence deterministic Parikh automata) is the smallest family of languages closed 
under commutative closure, right quotient with regular languages, and inverse deterministic finite transductions. Such a 
characterization of a family of languages involving deterministic automata (that do not coincide with nondeterministic 
automata) using closure properties is somewhat unusual and is of interest.

2. Preliminaries

We assume familiarity with formal language and automata theory [8], and computational complexity theory [9]. We will 
fix the notation used in the paper. Let � be a finite alphabet. Then �∗ (respectively �+) is the set of all words (non-empty 
words) over �. A word is an element w ∈ �∗ , λ is the empty word, and a language is any L ⊆ �∗ . The complement of 
L ⊆ �∗ is L = �∗ − L. A language L ⊆ �∗ is bounded if there exists (not necessarily distinct) words w1, . . . , wk such that 
L ⊆ w∗

1 · · · w∗
k . Further, L is letter-bounded if there exists (not necessarily distinct) letters a1, . . . , ak such that L ⊆ a∗

1 · · ·a∗
k . 

For L, R ⊆ �∗ , the right quotient of L by R is LR−1 = {x | xy ∈ L, y ∈ R}.
Let N be the set of positive integers and N0 be the set of non-negative integers. Let m ∈ N0. Then π(m) is 1 if m > 0 and 

0 otherwise. Let m ∈ N. Then N(m) = {1, . . . , m}. A subset Q of Nm
0 is a linear set if there exist vectors �v0, �v1, . . . , �vn ∈ Nm

0
such that Q = {�v0 + i1�v1 + · · · in �vn | i1, . . . , in ∈ N0}. The vectors �v0 (referred to as the constant) and �v1, . . . , �vn (referred 
to as periods) are called the generators of the linear set Q . A finite union of linear sets is called a semilinear set. Every 
finite subset of Nm

0 (including the empty set ∅) is semilinear — it is just a finite union of linear sets with no periods. For 
semilinear sets Q 1, Q 2 ⊆ Nm , Q 1 + Q 2 = {v | v = v1 + v2, v1 ∈ Q 1, v2 ∈ Q 2}.

Let � = {a1, . . . , am}. For a word w over � and a letter a ∈ �, we denote by |w|a the number of occurrences of a’s in w , 
and by |w| the length of w . The Parikh map of w is the m-dimensional vector ψ(w) = (|w|a1 , . . . , |w|am ). The Parikh map of 
a language L ⊆ �∗ is defined as ψ(L) = {ψ(w) | w ∈ L}. For �v ∈ Nm

0 , the inverse, ψ−1(�v) = {w ∈ �∗ | ψ(w) = �v}, extended 
to subsets of Nm

0 . A language is semilinear if its Parikh map is a semilinear set. The commutative closure of L ⊆ �∗ is the set

comm(L) = ψ−1(ψ(L)),

and a language L is said to be commutative if L = comm(L).
Of interest are languages that are both commutative and semilinear. For example, L1 = {w | w ∈ {a, b}∗, |w|a = 2|w|b}

and L2 = {w | w ∈ {a, b, c}∗, 2|w|a − 5|w|b > 4|w|c} are commutative semilinear languages.
A one-way k-counter machine is denoted by M = (k, Q , �, �, δ, q0, F ), where Q , �, �, q0, F are the set of states, input 

alphabet, right input end-marker not in �, initial state in Q , and accepting states that are a subset of Q . The transition 
function δ is a relation from Q × (� ∪ {�}) × {0, 1}k into Q × {S, R} × {−1, 0, +1}k , such that if δ(q, a, c1, . . . , ck) contains 
(p, d, d1, . . . , dk) and ci = 0 for some i, then di ≥ 0 to enforce that the counters cannot store negative numbers. The symbols 
S and R indicate the direction that the input tape head moves, either stay or right. Further, M is deterministic if δ is a 
partial function. A configuration of M is a k + 2-tuple (q, w�, c1, . . . , ck) representing that M is in state q, with w ∈ �∗ still 
to read as input, and c1, . . . , ck ∈ N0 being the contents of the k counters. The derivation relation 	M is defined between 
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