Conjugacy relations of prefix codes

Yong He*, Zhenhe Cui, Zihan Yuan
School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China

A R T I CLE IN F O

Article history:

Received 27 October 2014
Received in revised form 27 April 2016
Accepted 16 May 2016
Available online 18 May 2016
Communicated by J. Karhumäki
Keywords:
Conjugacy equation
Conjugacy relation
Initial part
Prefix code
Conjugacy problem

Abstract

It is shown that, if X and Y are prefix codes and Z is a non-empty language satisfying the condition $X Z=Z Y$, then Z is the union of a non-empty family $\left\{P_{n}\right\}_{i \in I}$ of pairwise disjoint prefix sets such that $X P_{i}=P_{i} Y$ for all $i \in I$. Consequently, the conjugacy relations of prefix codes are explored and, under the restriction that both of X and Y are prefix codes, the solutions of the conjugacy equation $X Z=Z Y$ for languages are determined. Also, the decidability of the conjugacy problem for finite prefix codes is confirmed.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the investigation of algebraic structures, equation is usually an interesting topic. On an algebraic structure G equipped with a binary operation, the commutativity equation $x y=y x$ is always a basic equation. For any $x, y \in G$, let

$$
\mathscr{C}(x, y)=\{z \in G \mid x z=z y\} .
$$

Then $\mathscr{C}(x, x)$ is exactly the centralizer of x. Therefore, the so called conjugacy equation $x z=z y$ is an expansion of the commutativity equation.

The conjugacy relation on a group induced by the conjugacy equation has played a fundamental role in the development of group theory. This motivates the consideration on the following analogous relations on an arbitrary monoid M :
the right conjugacy relation:
the left conjugacy relation:

$$
\text { the two-sided conjugacy relation: } \quad \stackrel{c}{\sim}=\stackrel{r}{\sim} \cap \stackrel{l}{\sim}
$$

the transposition relation:

$$
\begin{aligned}
\stackrel{r}{\sim} & =\{(x, y) \mid(\exists z \in M) x z=z y, z \neq 0\}, \\
\stackrel{l}{\sim} & =\{(x, y) \mid(\exists z \in M) z x=y z, z \neq 0\}, \\
\stackrel{c}{\sim} & =\stackrel{r}{\sim} \cap \stackrel{l}{\sim}, \\
\stackrel{t}{\sim} & =\{(x, y) \mid(\exists w, u \in M) x=w u, y=u w\}, \\
\stackrel{g}{\sim} & =\{(x, y) \mid(\exists g \in U) x g=g y\},
\end{aligned}
$$

the group conjugacy relation:

[^0]http://dx.doi.org/10.1016/j.tcs.2016.05.021
0304-3975/© 2016 Elsevier B.V. All rights reserved.
where 0 is the possible zero element of M, and U the group of units of M. Together with the transitive closure $\stackrel{t^{*}}{\sim}$ of the transposition relation $\stackrel{t}{\sim}$, the relations on the monoid M defined as above are uniformly called the conjugacy relations. It is pointed out in [5] that the relations $\stackrel{r}{\sim}$ and $\stackrel{l}{\sim}$ are reflexive, transitive and mutually inverse, the relation $\stackrel{t}{\sim}$ is reflexive and symmetric, the relations $\stackrel{g}{\sim}, t^{*}, \stackrel{c}{\sim}$ are equivalences and, in general,
\[

$$
\begin{equation*}
\stackrel{g}{\sim} \subseteq \frac{t}{\sim} \subseteq t^{t^{*}} \subseteq \stackrel{c}{\sim} \subseteq \stackrel{r}{\sim}, \stackrel{l}{\sim} \tag{1}
\end{equation*}
$$

\]

The conjugacy relations on free monoids and free inverse monoids have been considered in [12] and [4], respectively, while the applications of conjugacy relations in the decomposition and representation of monoids are explored in [1].

Observe that the set $\mathbb{L}(A)$ of languages on an alphabet A forms a monoid with respect to concatenation. The investigation of the conjugacy equation and conjugacy relations on $\mathbb{L}(A)$ is initiated by Perrin who considered the $\stackrel{t}{\sim}$-relation of codes [14]. It is observed that the relations $\stackrel{t}{\sim} \stackrel{c}{\sim}, \stackrel{r}{\sim}$ and $\stackrel{l}{\sim}$ on $\mathbb{L}(A)$ are pairwise distinct when A contains at least two letters [2]. The solutions of the conjugacy equation $X Z=Z Y$ on $\mathbb{L}(A)$ satisfying the following additional conditions are determined or partially determined in [2,3,7,10]:
(i) $|Z|=1$;
(ii) Z is a biprefix code;
(iii) X, Y, Z are prefix codes;
(iv) $|X|+|Y| \leq 5$;
(v) X, Y are finite biprefix codes (esp., uniform codes).

The aim of the present paper is to characterize the conjugacy relations of prefix codes, determine the solutions of the conjugacy equation $X Z=Z Y$ under the restriction that X and Y are prefix codes, and then consider the conjugacy problem for finite prefix codes. The technique used in this paper is hungered by the authors of [3] when they investigated the conjugacy of finite biprefix codes. For the terminologies and notations without explanation, the reader is referred to [1,17].

2. Preliminaries

In what follows, all words and languages considered are on a given alphabet A. The free monoid, the free semigroup and the set of languages on A are denoted by A^{*}, A^{+}and $\mathbb{L}(A)$, respectively. The empty word is written as ϵ. The length of a word w is denoted by $\lg (w)$. Then $\lg (w)=0$ precisely when $w=\epsilon$. The group conjugacy relations $\stackrel{g}{\sim}$ on A^{*} and $\mathbb{L}(A)$ are to be out of considerations since they are trivial. The following achievement of Lentin and Schützenberger is interesting.

Lemma 2.1. ([12]) On the monoid $A^{*}, \stackrel{t}{\sim}=\stackrel{t^{*}}{\sim}=\stackrel{c}{\sim}=\stackrel{r}{\sim}=\stackrel{l}{\sim}$.
A non-empty word is said to be primitive if it is not a power of another word. Observe that each non-empty word w is the power of a unique primitive word which is called the primitive root of w and denoted by \sqrt{w}. A description for the relation $\stackrel{r}{\sim}$ (and hence for the other conjugacy relations) on A^{*} is given as below:

Lemma 2.2. ([13]) Let x and y be two non-empty words. Then $x \stackrel{r}{\sim} y$ if and only if $\sqrt{x} \stackrel{r}{\sim} \sqrt{y}$ and $x=(\sqrt{x})^{k}, y=(\sqrt{y})^{k}$ for some $k \in \mathbb{N}^{+}$. Moreover, if this is the case, there exists a unique pair $(p, q) \in A^{*} \times A^{+}$such that $\sqrt{x}=p q, \sqrt{y}=q p$ and $\mathscr{C}(x, y)=(p q)^{*} p$.

Let L be an arbitrary language. The cardinality of L is denoted by $|L|$. If L is the union of a family $\left\{L_{i}\right\}_{i \in I}$ of pairwise disjoint languages, then we use the notation

$$
L=\biguplus_{i \in I} L_{i}
$$

For each $n \in \mathbb{N}$, denote the set of all words of length n in L by $L^{[n]}$. It is clear that

$$
L=\biguplus_{n \in \mathbb{N}} L^{[n]}
$$

and hence a language K coincides with L if and only if $L^{[n]}=K^{[n]}$ for all $n \in \mathbb{N}$. For any subset I of \mathbb{N}, put

$$
L^{I}=\bigcup_{i \in I} L^{i}
$$

Then $L^{\mathbb{N}}=L^{*}$ where * is the Kleene star operation on languages. The language

$$
\bar{L}=L-L A^{+}
$$

https://daneshyari.com/en/article/435340

Download Persian Version:
https://daneshyari.com/article/435340

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: ynghe@263.net (Y. He), 2857727938@qq.com (Z. Cui), yuanzihan2000@163.com (Z. Yuan).

