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We investigate the complexity of several problems linked with identification in graphs; for 
instance, given an integer r ≥ 1 and a graph G = (V , E), the existence of, or search for, 
optimal r-identifying codes in G , or optimal r-identifying codes in G containing a subset 
of vertices X ⊂ V . We locate these problems in the complexity classes of the polynomial 
hierarchy.

© 2016 Published by Elsevier B.V.

1. Introduction and preliminary results

Following [17], which investigates the complexity of Slater’s problems in tournaments, our goal in this paper is to study 
the algorithmic complexity of different variants of the identifying problem in graphs.

In [18], we do the same work for domination problems.

1.1. Outline of the paper

In Subsection 1.2, we present the necessary notation and definitions about identifying codes; Subsection 1.3 gives pre-
liminary results on identifying codes. In Section 2, we present seven problems, decision, optimization or search problems, 
related to identification, we give some known results, before we motivate our research and give our own development. We 
shall provide the necessary notions of complexity as we go along. The conclusion recapitulates our results.

1.2. Definitions and notation

We first give the necessary definitions and notation for identification in graphs; see the seminal paper [20], and also [21]
for a large bibliography.
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We shall denote by G = (V , E) a finite, simple, undirected graph with vertex set V and edge set E , where an edge
between x ∈ V and y ∈ V is indifferently denoted by xy or yx. The order of the graph is its number of vertices, |V |. A path
Pk = x1x2 . . . xk is a sequence of k distinct vertices xi , 1 ≤ i ≤ k, such that xi xi+1 is an edge for i ∈ {1, 2, . . . , k −1}. The length
of Pk is its number of edges, k − 1.

A graph G is called connected if for any two vertices x and y, there is a path between them; it is called disconnected
otherwise. In a connected graph G , we can define the distance between any two vertices x and y, denoted by dG (x, y), as 
the length of any shortest path between x and y, since at least one such path exists. This definition can be extended to 
disconnected graphs, using the convention that dG (x, y) = +∞ if no path exists between x and y. The subscript G can be 
dropped when there is no ambiguity.

For an integer k ≥ 2, the k-th transitive closure, or k-th power of G = (V , E) is the graph Gk = (V , Ek) defined by Ek =
{uv : u ∈ V , v ∈ V , dG(u, v) ≤ k}.

For any vertex v ∈ V , the open neighbourhood N(v) of v consists of the set of vertices adjacent to v , i.e., N(v) = {u ∈
V : uv ∈ E}; the closed neighbourhood of v is B1(v) = N(v) ∪ {v}. This notation can be generalized to any integer r ≥ 0 by 
setting

Br(v) = {x ∈ V : d(x, v) ≤ r}.
For X ⊆ V , we denote by Br(X) the set of vertices within distance r from X :

Br(X) = ∪x∈X Br(x).

Two vertices x and y such that Br(x) = Br(y), x 
= y, are called r-twins. If G has no r-twins, we say that G is r-twin-free. 
Whenever two vertices x and y are such that x ∈ Br(y) (which is equivalent to y ∈ Br(x)), we say that x and y r-cover
or r-dominate each other; note that every vertex r-covers itself. A set W is said to r-cover a set Z if every vertex in Z
is r-covered by at least one vertex of W . When three vertices x, y, z are such that z ∈ Br(x) and z /∈ Br(y), we say that z
r-separates x and y in G (note that z = x is possible). A set of vertices is said to r-separate x and y if it contains at least 
one vertex which does.

A code C is simply a subset of V , and its elements are called codewords. For each vertex v ∈ V , we denote the set of 
codewords r-covering v by IG,C,r(v), or, when there is no ambiguity on G , by IC,r(v):

IG,C,r(v) = IC,r(v) = Br(v) ∩ C .

We say that C is an r-dominating code in G if all the sets IC,r(v), v ∈ V , are nonempty; in other words, every vertex 
is r-dominated by C . We say that C is an r-identifying code if all the sets IC,r(v), v ∈ V , are nonempty and distinct: in 
other words, every vertex is r-covered by C , and every pair of vertices is r-separated by C . It is quite easy to observe 
that a graph G admits an r-identifying code if and only if G is r-twin-free; this is why r-twin-free graphs are also called 
r-identifiable. When G is r-twin-free, we denote by ir(G) the smallest cardinality of an r-identifying code in G , and call it 
the r-identification number of G . Any r-identifying code C such that |C | = ir(G) is said to be optimal.

1.3. Some useful facts on identification

In the sequel, we shall need the following results on identification.

Lemma 1. Let r ≥ 1 be an integer and G be a graph. If C is an r-identifying code in G, then any code S ⊇ C also is.

Proof. When we add the elements of S \ C to the adequate sets IC,r(v), these new sets I S,r(v) are still nonempty and 
distinct, and distinct from the sets with no addition (those such that I S,r (v) = IC,r(v)). �
Lemma 2. Let r ≥ 2 be an integer and G = (V , E) be a graph. A code C is 1-identifying in Gr , the r-th power of G, if and only if it is 
r-identifying in G.

Proof. For every vertex v ∈ V , we have:

IG,C,r(v) = {c ∈ C : dG(v, c) ≤ r} = {c ∈ C : dGr (v, c) ≤ 1} = IGr ,C,1(v). �
Lemma 3. Let G = (V , E) be a 1-twin-free graph. For a given set of vertices A = {α1, . . . , αk} ⊆ V , we construct the following graph 
G A = (V A, E A), which depends on A (see Fig. 1):

V A = V ∪ V ∗
A, with V ∗

A = ∪1≤ j≤k V ∗
j and V ∗

j = {β j,1, β j,2, δ j, λ j},
E A = E ∪ {α jβ j,1, β j,1β j,2, β j,1δ j, β j,1λ j, β j,2δ j, β j,2λ j : 1 ≤ j ≤ k},

where for j ∈ {1, . . . , k}, none of the vertices β j,1, β j,2, δ j, λ j belongs to V .
Then A ⊆ V is included in at least one optimal 1-identifying code in G if and only if i1(G) = i1(G A) − 2|A|.
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