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In this paper we investigate the computational complexity of solving ordinary differential 
equations (ODEs) y′ = p(y) over unbounded time domains, where p is a vector of 
polynomials. Contrarily to the bounded (compact) time case, this problem has not been 
well-studied, apparently due to the “intuition” that it can always be reduced to the 
bounded case by using rescaling techniques. However, as we show in this paper, rescaling 
techniques do not seem to provide meaningful insights on the complexity of this problem, 
since the use of such techniques introduces a dependence on parameters which are hard 
to compute.
We present algorithms which numerically solve these ODEs over unbounded time domains. 
These algorithms have guaranteed accuracy, i.e. given some arbitrarily large time t and 
error bound ε as input, they will output a value ỹ which satisfies ‖y(t) − ỹ‖ ≤ ε. We 
analyze the complexity of these algorithms and show that they compute ỹ in time 
polynomial in several quantities including the time t, the accuracy of the output ε and 
the length of the curve y from 0 to t, assuming it exists until time t. We consider both 
algebraic complexity and bit complexity.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The purpose of this paper is to characterize the computational complexity needed to solve a polynomial initial-value 
problem (PIVP) defined by{

y′(t) = p(y(t))
y(t0) = y0

(1)

over an unbounded time domain. Since the system is autonomous, we can assume, without loss of generality, that t0 = 0. 
More precisely, we want to compute y(t) with accuracy 2−n , where t ∈ R, n ∈N, and a description of p are given as inputs, 
and y is the solution of (1). We have to assume the existence of y until time t because this problem is undecidable, even 
for polynomial ODEs [13].
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1.1. Why polynomial differential equations?

In this paper we study the computational complexity of solving initial-value problems (IVPs) y′ = f (t, y), y(t0) = y0, 
where f is a vector of polynomials, over (potentially) unbounded domains. The reader may ask: “why do you restrict f
to polynomials when there are several results about the computational complexity of solving IVPs for the more general 
case where f is Lipschitz?”. There are, indeed, several results (see Section 1.4 for some references) which analyze the 
computational complexity of solving Lipschitz IVPs in bounded domains. And, in bounded domains polynomials are Lipschitz 
functions (since they are of class C1) and therefore those above-mentioned results also apply to PIVPs.

However, in this paper we tackle the problem of computing the solutions of IVPs over unbounded domains and in that 
respect the previous results do not apply, and no easy technique seems to establish a bridge between the bounded and 
unbounded case (some authors informally suggested us that a “rescaling technique” could be used, but this technique does 
not work, as we will see in Section 1.2). In some sense, the unbounded case is more general than the bounded case: if 
you know the complexity needed to solve an IVP over, e.g. R, then you can easily restrict this general case to give a bound 
for the complexity needed to solve the same IVP over, e.g. [0, 1], but the reverse is not evident. For this reason, it seems 
natural that results about the computational complexity of IVPs over unbounded domains should be harder to get (or at 
least should not be easier to get) than similar results for the bounded case.

That’s the first reason why we use PIVPs: they are not trivial (polynomials do not satisfy a Lipschitz condition over 
an unbounded domain, contrarily to simpler functions like linear functions) but yet have “nice” properties which we can 
exploit to deal with the harder case of establishing the computational complexity of solving IVPs over unbounded domains.

The second reason to use PIVPs is that they include a fairly broad class of IVPs, since any IVP written with the usual 
functions of Analysis (trigonometric functions, exponentials, their composition and inverse functions, etc.) can be rewritten 
as PIVPs, as shown in [22,14].

1.2. A note on rescaling

It is tempting to think that the unbounded time domain case can be reduced to the bounded time one. We would like 
to note that this not the case unless the bounded time case complexity is studied in terms of all parameters which is never 
the case. Indeed a very simple example illustrates this problem. Assume that y : I → Rd satisfies the following system:⎧⎪⎪⎨

⎪⎪⎩
y1(0) = 1
y2(0) = 1

. . .

yn(0) = 1

⎧⎪⎪⎨
⎪⎪⎩

y′
1(t) = y1(t)

y′
2(t) = y1(t)y2(t)
. . .

y′
d(t) = y1(t) · · · yn(t)

Results from the literature (namely [19] – see Section 2) show that for any fixed, compact I , y is polynomial time (precision-
)computable (i.e. for any t ∈ I we can compute an approximation of y(t) with precision 2−n in time polynomial in n – see 
e.g. [8]). On the other hand, this system can be solved explicitly and yields:

y1(t) = et yn+1(t) = e yn(t)−1 yd(t) = ee . .
.e

et −1

−1

One immediately sees that yd being a tower of exponentials prevents y from being polynomial time (precision-)computable 
over R, for any reasonable notion, although yd (and y) is polynomial time (precision-)computable over any fixed compact.

This example clearly shows that the solution of an IVP (or even of a PIVP) can be polynomial time computable on 
any fixed compact, while it may not necessarily be polynomial time computable over R. In fact this example provides an 
even stronger counter-example: the discrepancy between the bounded and unbounded time domain can be arbitrarily high. 
Note however that this discrepancy arises because in the bounded time case, the size of the compact I is not taken as 
a parameter of the problem (because it is fixed). Also note that the dimension d of the system is hardly ever taken into 
account, although it has a huge influence on the resulting complexity. More precisely, if I is bounded then the complexity 
of computing y(t) can be seen to be polynomial in t , but more than exponential in |I| and d: this part is usually hidden in 
the “big-O” part of the constants in the function measuring the complexity for the bounded case.

1.3. Contributions

In this paper we give several contributions to the problem of solving the polynomial initial value problems (1). The main 
result of this paper is given by Theorem 16. Namely we present an algorithm which solves (1) and

• show that our algorithm works even for unbounded time interval I ,
• we analyze the complexity of the algorithm with respect to all parameters (including the dimension),
• we show that the complexity is polynomial-time computable in the accuracy of the output,
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