
Theoretical Computer Science 619 (2016) 1–31

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Finite-state concurrent programs can be expressed in pairwise 

normal form

Paul C. Attie

Department of Computer Science, American University of Beirut, Beirut, Lebanon

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 March 2014
Received in revised form 30 October 2015
Accepted 20 November 2015
Available online 3 December 2015
Communicated by R. van Glabbeek

Keywords:
Finite-state concurrent programs
Expressive completeness
Atomic registers
State-explosion

We show that any finite-state shared-memory concurrent program can be transformed 
into pairwise normal form: all variables are shared between exactly two processes, and 
the guards on transitions are conjunctions of conditions over this pairwise shared state. 
Specifically, if P is a finite-state shared-memory concurrent program, then there exists 
a finite-state shared-memory concurrent program P expressed in pairwise normal form 
such that P is strongly bisimilar to P . Our result is constructive: we give an algorithm for 
producing P , given P .

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

It is well-known that synchrony increases the power of concurrent programs, e.g., with respect to the ability to solve 
consensus in the presence of some number and type of faults [15]. In this paper, we investigate the power of synchrony 
with respect to shared registers (i.e., shared variables) in a concurrent program. We show that, by using a larger grain of 
synchronous atomic action, we can decrease the power of the shared registers that are used. Specifically, we can replace 
any number of K -reader K -writer variables by (a larger number of) 1-reader 1-writer variables.

We present a transformation that starts with a concurrent program P = P1‖ · · · ‖P K and produces an equivalent (strongly 
bisimilar) concurrent program P = P1‖ · · · ‖PK in pairwise normal form: (1) P uses only 1-reader 1-writer shared variables, 
and (2) every process Pi in P shares and updates state with other processes on a pairwise basis. That is, Pi shares and 
updates state with P j , and also with Pk . The actions of Pi are “conjunctions” of “pairwise” actions. Each pairwise action 
inspects and updates the 1-reader 1-writer variables that are shared between Pi and one other process P j . A different 
pairwise action inspects and updates the 1-reader 1-writer variables that are shared between Pi and Pk . An action of Pi

is a “conjunction” of such pairwise actions. The global state transition diagram of P is strongly bisimilar to the global state 
transition diagram of P . Thus, in particular, our transformation does not introduce any extraneous waiting, i.e., waiting that 
is not originally present in P .

Our result has implications for the program synthesis and verification methods developed in [1,3,4]. Those papers present 
methods for synthesizing concurrent programs in pairwise normal form, and for verifying their deadlock-freedom, safety, 
and liveness properties. These methods exploit pairwise normal form to avoid state-explosion; they work by analyzing the 
global state transition diagrams of small subsystems of processes (two processes for safety and liveness, and three processes 
for deadlock-freedom).

E-mail address: paul.attie@aub.edu.lb.

http://dx.doi.org/10.1016/j.tcs.2015.11.032
0304-3975/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2015.11.032
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:paul.attie@aub.edu.lb
http://dx.doi.org/10.1016/j.tcs.2015.11.032
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2015.11.032&domain=pdf


2 P.C. Attie / Theoretical Computer Science 619 (2016) 1–31

In principle, one could verify a concurrent program P by using the result of this paper to convert P to P , and then apply 
the methods of [1,3,4] to P . However, there is an exponential blowup in going from P to P , as P has size on the order of 
the size of the global state transition diagram of P , and so state-explosion is not avoided here. In practice, and as shown 
by the examples in [1,3,4], concurrent programs in pairwise normal form would be written manually and then verified, or 
would be synthesized from temporal logic specifications of the form 

∧
i j f i j , i.e., conjunctions over pairs of processes.

We therefore emphasize that our result is an expressiveness result per se, and does not provide the basis for an ef-
ficient verification method for concurrent programs. Our result shows that the restriction to pairwise normal form does 
not, in principle, incur a loss of expressiveness. Hence the methods of [1,3,4] are quite general with respect to finite-state 
concurrent programs.

Pairwise normal form has two major benefits: (1) it enables the use of the results of [1,3,4] to verify the correctness 
of concurrent programs without state-explosion, and (2) it provides a notation that is modular and compositional: the 
interaction between two processes Pi and P j is expressed as a set of “pairwise actions” that are separate from the rest 
of P = P1‖ · · · ‖PK . This provides code locality and modifiability [22], since the interaction between Pi and P j can be 
inspected and modified separately from the other pairwise interactions in P .

The rest of the paper is as follows. Section 2 presents our model of concurrent computation and defines the global state 
transition diagram of a concurrent program. Section 3 defines pairwise normal form. Section 4 presents our main result: any 
finite-state shared-memory concurrent program P can be transformed into a strongly-bisimilar finite-state shared-memory 
concurrent program P that is in pairwise normal form. A running example is included, for illustration. Section 5 presents 
another example. Section 6 discusses related work, and Section 7 concludes.

2. Technical preliminaries

2.1. Model of concurrent computation

We consider finite-state shared-memory concurrent programs of the form P = P1‖ · · · ‖P K that consist of a finite number 
K of fixed sequential processes P1, . . . , P K running in parallel. Each Pi is a synchronization skeleton [11], that is, a directed 
multigraph where each node is a local state of Pi , which is labeled by a unique name si , and where each arc is labeled with 
a guarded command [8] Bi → Ai consisting of a guard Bi and corresponding action Ai . We write such an arc as the tuple 
(si, Bi → Ai, s′

i), where si is the source node and s′
i is the target node. Each node must have at least one outgoing arc, i.e., 

a synchronization skeleton contains no “dead ends.” This is without loss of generality, since a dead end can be simulated by 
an arc labeled with the guarded command false → skip. For K ≥ 1, let [K ] denote the set {1, . . . , K } and [K ] \ i denote the 
set {1, . . . , K } − {i}.

Let Si denote the set of local states of Pi . With each Pi , we associate a finite set AP i of atomic propositions, and a 
mapping V i : Si → (AP i → {true, false}) from local states of Pi to boolean valuations over AP i : for pi ∈ AP i , V i(si)(pi) is 
the value of atomic proposition pi in si . Hence, as Pi executes transitions and changes its local state, the atomic propositions 
in AP i are updated, since V i(si) �= V i(s′

i) in general. Atomic propositions are not shared: AP i ∩AP j = ∅ when i �= j. Any 
process P j , j �= i, can read (via guards) but not update the atomic propositions in AP i . We define the set of all atomic 
propositions AP = AP1 ∪ · · · ∪ AP K . There is also a finite set SH = {x1, . . . , xm} of shared variables, which can be read 
and written by every process. Each x� takes values from some finite domain D� , for � = 1, . . . , m. These are updated by 
the action Ai of an arc. Fig. 1 presents an example synchronization skeleton program (taken from [11]) for two-process 
mutual exclusion. Process Pi (i = 1, 2) has AP i = {Ni, Ti, Ci}, and each local state is labeled with the atomic propositions 
true in that state. Ni indicates neutral: Pi is engaged in local computation. Ti indicates trying: Pi has requested the critical 
resource. Ci indicates critical: Pi is in its critical section, and so holds the critical resource. A shared variable x resolves 
contention when both processes have requested the critical resource and are in their trying states. An incoming arrow 
indicates the initial local states.

A global state is a tuple of the form (s1, . . . , sK , v1, . . . , vm) where si is the current local state of Pi and v1, . . . , vm is a 
list giving the current values of x1, . . . , xm , respectively. We write s(x�) for the value v� that s assigns to x� , � = 1, . . . , m.

For any arc (si, Bi → Ai, s′
i) of some process Pi , the guard Bi is a formula which denotes a predicate on global states, 

and the action Ai is any piece of terminating pseudocode that updates the shared variables. We do not further restrict the 
syntax of Bi and Ai ; any computable function and predicate over AP and x1, . . . , xm can be used. We do however, assume 
that “simple” functions and predicates are used, so that the cost of evaluating Bi and executing Ai is proportional to their 
length. This is not a restriction in practice. If Bi holds in global state s, we write s |= Bi . We write just Ai for true → Ai and 
just Bi for Bi → skip, where skip is the empty assignment.

We model parallelism as usual by the nondeterministic interleaving of the “atomic” transitions of the individual pro-
cesses Pi .

Definition 1 (Next-state relation). Let s = (s1, . . . , si, . . . , sK , v1, . . . , vm) be the current global state, and let Pi contain an arc 
from node si to node s′

i labeled with Bi → Ai . If Bi holds in s, then a possible next state is s′ = (s1, . . . , s′
i, . . . , sK , v ′

1, . . . , v
′
m)

where v ′
1, . . . , v

′
m are the new values for the shared variables resulting from the execution of action Ai . The set of all (and 

only) such triples (s, i, s′) constitutes the next-state relation of program P .



Download English Version:

https://daneshyari.com/en/article/435376

Download Persian Version:

https://daneshyari.com/article/435376

Daneshyari.com

https://daneshyari.com/en/article/435376
https://daneshyari.com/article/435376
https://daneshyari.com

