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The notion of duty cycling is common in problems which seek to maximize the lifetime 
of a wireless sensor network. In the duty cycling model, sensors are grouped into shifts
that take turns covering the region in question, and each sensor can belong to at most 
one shift. We consider the imposition of the duty cycling model upon the Strip Cover

problem, where we are given n sensors on a one-dimensional region, and each shift can 
contain at most k ≤ n sensors. We call the problem of finding the optimal set of shifts so as 
to maximize the length of time that the entire region can be covered by a wireless sensor 
network, k-Duty Cycle Strip Cover (k-DutySC). In this paper, we present a polynomial-time 
algorithm for 2-DutySC. Furthermore, we show that this algorithm is a 35

24 -approximation 
algorithm for k-DutySC. We also give two lower bounds on the performance of our 
algorithm: 15

11 , for k ≥ 4, and 6
5 , for k = 3, and provide experimental evidence suggesting 

that these lower bounds are tight. Finally, we propose a fault tolerance model and find 
thresholds on the sensor failure rate over which our algorithm has the highest expected 
performance.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

We consider the following problem: Suppose we have a one-dimensional region (or interval) that we wish to cover with 
a wireless sensor network. We are given the locations of n sensors located on that interval, and each sensor is equipped 
with an identical battery of finite charge. We have the ability to set the sensing radius of each sensor, but its battery charge 
drains in inverse proportion to the radius that we set. Our goal is to organize the sensors into disjoint coverage groups (or 
shifts), that will take turns covering the entire region for as long as possible. We call this length of time the lifetime of the 
network.

More specifically, we consider the Strip Cover problem with identical batteries under a duty cycling restriction. An in-
stance consists of a set X ⊆ [0, 1] of n sensor locations, and a rational number B representing the initial battery charge 
of each sensor. Each battery discharges in inverse linear proportion to its radius, so that a sensor i whose radius is set to 
ri survives for B/ri time. In the duty cycling model, the sensors are partitioned into disjoint coverage groups, called shifts, 
which take turns covering the entire interval for as long as their batteries allow. The sum of these lengths of time is called 
the lifetime of the network and is denoted by T . For any fixed k ≤ n, the k-Duty Cycle Strip Cover (k-DutySC) problem seeks 

✩ A preliminary version of this paper appeared in the proceedings of the 19th International Colloquium on Structural Information and Communication 
Complexity (SIROCCO), 2012.
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an optimal partitioning of the sensors such that the network lifetime T is maximized, yet no coverage group contains more 
than k sensors. In the fault tolerant variant, each sensor may fail to activate with some fixed probability p ∈ [0, 1], and we 
seek to maximize the expected lifetime of the network (i.e., the expected sum of lifetimes of surviving shifts).

Motivation Applications of scheduling problems similar to Strip Cover are increasingly common. One such application 
involves monitoring a fence, or supply line, that exists in inhospitable territory. In this case, it may be feasible (even 
cost-effective) to deploy a set of sensors along the fence, but unfeasible to position them at pre-determined locations. 
For example, it might be easy to drop the senors from an airplane, but impossible to dispatch human beings to place 
them. While the scheduler may have access to the location of each sensor via GPS, technical limitations may require that 
a single assignment be given. In such a scenario, we might be incentivized to organize the sensors into disjoint shifts, 
providing motivation for our duty cycling model. Finally, any physical device will have some nonzero failure rate, and thus 
a fault-tolerant solution will be more robust.

Solutions to the general Strip Cover problem contain both the radial assignments and activation and de-activation times 
for each sensors. As a result, these solutions can be complicated to implement and understand. Moreover, interdependence 
among multiple sensors can make such solutions susceptible to catastrophic decline in network lifetime if there is a non-
zero probability of sensor failure. Conversely, since in the duty cycling model each sensor can participate in at most one 
cover shift, the scheduling of the shifts is of little importance. Furthermore, by minimizing the number of sensors partici-
pating in each shift, duty cycling solutions become more resilient to sensor failure.

Related work This line of research began with Buchsbaum, et al.’s [5] study of the Restricted Strip Cover (RSC) problem. 
In RSC, the locations and sensing radii of n sensors placed on an interval are given, and the problem is to compute an 
optimal set of activation times, so as to maximize the network lifetime. They showed that RSC is NP-hard, and presented an 
O (log log n)-approximation algorithm. Gibson and Varadarajan [11] later improved on this result by discovering a constant 
factor approximation algorithm.

The problem of finding the optimal set of radial assignments for sensors deployed on an interval, rather than the acti-
vation times, is more tractable. Peleg and Lev-Tov [12] considered the problem of covering a finite set of m target points 
while minimizing the sum of the radii assigned, and found an optimal polynomial-time solution via dynamic program-
ming. The situation wherein the whole interval must be covered corresponds to a “one shift” version of n-DutySC, wherein 
the restriction is not upon the size of each shift, but upon the number of shifts. Bar-Noy, et al. [4] provided an optimal 
polynomial-time algorithm for this problem.

The interest in duty cycling developed in part from the introduction of the Set k-Cover problem by Slijepcevic and 
Potkonjak [16]. This problem, which they showed to be NP-hard, seeks to find at least k disjoint covers among a set of 
subsets of a base set. Perillo and Heinzelman [15] considered a variation in which each sensor has multiple modes. They 
translated the problem into a generalized maximum flow graph problem, and employed linear programming to find an 
optimal solution. Abrams et al. [1] provided approximation algorithms for a modification of the problem in which the 
objective was to maximize the total area covered by the sensors. Cardei et al. [6–8] considered adjustable range sensors, but 
also sought to maximize the number of non-disjoint set covers over a set of target coverage points.

The work of Pach and Tóth [13,14] also has applications in this context. They showed that a k-fold cover of translates of 
a centrally-symmetric open convex polygon can be decomposed into Ω(

√
k) covers. Aloupis, et al. [2] improved this to the 

optimal Ω(k) covers, and the centrally-symmetric restriction was later lifted by Gibson and Varadarajan [11]. In each of the 
above cases, the concept of finding many disjoint set covers, which can be seen as shifts, is used as a proxy for maximizing 
network lifetime.

Finally, the general Strip Cover problem, in which each sensor has a different battery charge, was studied by Bar-Noy, 
et al. [4]. They also considered the Set Once Strip Cover (OnceSC) problem, in which the radius and activation time of each 
sensor can be set only once. They showed that OnceSC is NP-hard, and that RoundRobin (sensors take turns covering the 
entire interval) is a 3

2 -approximation algorithm for both OnceSC and Strip Cover. Bar-Noy, et al. [4] also showed that the 
approximation ratio of any duty cycling algorithm is at least 3

2 for both OnceSC and Strip Cover. Bar-Noy and Baumer [3]
also analyzed non-duty cycling algorithms for Strip Cover with identical batteries. The Connected Range Assignment prob-
lem studied by Chambers, et al. [9], wherein the goal is to connect a series of points in the plane using circles, is also 
related. They presented approximation bounds for the case where solutions use a fixed number of circles, which is similar 
to limiting shift sizes.

Our results In Section 2, we define the class of k-DutySC problems, and present the trivial solution to 1-DutySC. We 
present a polynomial-time algorithm, which we call Match, for 2-DutySC in Section 3. This algorithm is based on the
reduction to Maximum Weight Matching in bipartite graphs. In Section 4, we compare the performance of RoundRobin

to an algorithm that uses only a single shift. We prove that when the sensors are equi-spaced on the coverage interval,
RoundRobin performs most poorly in comparison to the one shift algorithm. Then we study the performance of RoundRobin

on these “perfect” deployments. This study is used to analyze Match in k-DutySC, but is of independent interest, since 
perfect deployments are the most natural. In Section 5 we show that Match is a 35

24 -approximation algorithm for k-DutySC. 
We also give two lower bounds on the performance of Match: 15

11 , for k ≥ 4, and 6
5 , for k = 3, and provide experimental 

evidence suggesting that these lower bounds are tight. The question of whether k-DutySC is NP-hard, for k ≥ 3, remains 
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