
Questioning the role of sparse coding
in the brain
Anton Spanne and Henrik Jö rntell
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Coding principles are central to understanding the orga-
nization of brain circuitry. Sparse coding offers several
advantages, but a near-consensus has developed that it
only has beneficial properties, and these are partially
unique to sparse coding. We find that these advantages
come at the cost of several trade-offs, with the lower
capacity for generalization being especially problematic,
and the value of sparse coding as a measure and its
experimental support are both questionable. Further-
more, silent synapses and inhibitory interneurons can
permit learning speed and memory capacity that was
previously ascribed to sparse coding only. Combining
these properties without exaggerated sparse coding
improves the capacity for generalization and facilitates
learning of models of a complex and high-dimensional
reality.

The concept of sparse coding is widely applied as an
interpretational framework to understand the function
of the neuronal circuitry in both the cerebellum and the
neocortex. The main reason for the interest in this coding
scheme is that sparse coding can have beneficial features
for both memory capacity [1,2] and speed of learning [3], as
illustrated in various simulations of brain circuitry func-
tion [4–9]. From a simulation point of view, it provides the
additional advantage of reduced computational load, and is
therefore popular in technical applications that for exam-
ple involve artificial neural networks [10,11]. However, two
things are not clear: (i) to what extent sparse coding could
also lead to disadvantages for brain function, and (ii)
whether the brain actually features circuitry mechanisms
that enforce sparse coding.

A major difficulty for the elucidation of its possible role
in the brain is that sparse coding is a relative term and a
wide range of definitions are used by authors in the field.
Indeed, in the widest possible theoretical sense, there is
sparse activity in a neuronal population whenever the
average activation ratio remains below 50% for binary
neurons or below 100% for thresholded neurons that are
continuously rate-coded when active. The wide definition
allows almost any form of neural representations to be
classified as sparse coded in a superficial analysis. Hence,
highly disparate coding schemes can be labeled ‘sparse

coded’ even though they have nothing in common other
than low levels of neuronal firing under some circum-
stances. The situation is further complicated because the
concepts of lifetime sparseness of a single neuron and
population sparseness are used interchangeably, even
though the first does not imply the other [12].

The interpretation of sparse coding is often applied
uncritically, and a near-consensus appears to have devel-
oped that sparse coding can only bring advantages, with
some of those advantages being unique to sparse coding. In
the present paper we take a deeper look into the underly-
ing constraints and trade-offs associated with sparse cod-
ing, as well as reviewing its current state of experimental
support. The most fundamental of these trade-offs is the
capacity for generalization [2], which in extreme sparse
coding is very low and tend to lead to overtraining – in
other words, the learning of meaningless contingencies
[13]. Because we also find that the experimental support
for sparse coding is questionable in both the cerebellum
and the neocortex, we explore the consequences of the
assumption that brain circuitry in reality implements
alternative principles of coding, a scenario in which there
are situations where sparse coding-like properties may
arise as an epiphenomenon [14].

The meaning of the concept of sparse coding and
implicit trade-offs
In the reasoning below we will refer to the concept of
‘context’, which results in a pattern of activation in a layer
of input neurons. As in many theoretical studies exploring
the properties of sparse codes [1–6], the context should
elicit a specific response in an output neuron that samples
the input neurons. From the point of view of an output
neuron, the context is defined by all the sensory and other
input signals that converge on the output neuron. From the
point of view of the brain, a context equals a state that
takes into account the configuration of the entire body,
specifically the entire population of peripheral sensors and
the entire population of neurons in the brain. This latter
arises because every neuron of the brain has a potential
contribution to the output of the brain (in terms of muscle
activation), and the state thus comprises all sensor signals
and all motor signals of the brain. Therefore, two different
contexts, as defined here, can never coexist in time. An
individual output neuron is typically part of a larger group
of output neurons that belong to the same neuronal layer,
and the individual neuron will therefore contribute by
solving only a small part of the input–output puzzle that
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the local output layer needs to solve (the brain consists of
many such local output layers). In each context, or state,
there is only one optimal output for each output neuron.
Failure to find this optimal output will degrade the perfor-
mance of the system, but may not mean that the perfor-
mance breaks down completely.

An extreme case of sparseness is the so-called local code,
where only one or a small set of the neurons in an input
layer are active during a given context. Each neuron
participates in the representation of a single context only
(Figure 1A), and this eliminates any interference between
representations of different contexts. Neurons with this
type of specificity are commonly referred to as ‘grandmoth-
er neurons’ [15]. Because each context is encoded by sepa-
rate neurons, an output neuron that is innervated by the
layer of local coding neurons can easily learn to decode the
signal. In principle, the network could already learn to
respond correctly to a context after a single trial, by
adjusting the weights of the active synapses only, because
there is no overlap or interference of the activity between
different contexts. Therefore, learning in local code can be
extremely fast, at least in cases where there is also a
system to supervise the learning – in other words, to
provide information to the output neuron on how to re-
spond in a given context. However, local code comes with
major drawbacks, in particular a low representational
capacity – the layer of input neurons can maximally encode
one context per neuron [2].

The opposite of local code in terms of sparseness is a
dense code where each context is represented by the com-
bined activity of all (100%) of neurons (Figure 1A, middle).
In general, a network with a dense code can encode MN

contexts, where M is the number of distinct states of the
neurons, and N is the number of neurons. Hence, the
number of possible encoded contexts using dense code will
quickly reach astronomical values as the number of neu-
rons increases. However, a dense code also comes with
limiting drawbacks. Interference between contexts, a nat-
ural consequence because all representations can overlap,
increases the possible complexity of the relationship the
output neuron needs to learn, which therefore leads to a
decrease in learning speed. The relationship between the
speed of learning and degree of sparseness has been shown

using models of the cerebellar circuitry and theoretical
reasoning based on gradient descent [3] (but see the caveat
discussed in ‘Model complexity’, below). For completeness,
the special case of binary activation functions should also
be considered because maximal representational capacity
in this case is obtained when there is an equal probability
that each neuron will be either on or off under each context
(Figure 1B). Consequently, an average activity of 50%
within a population of binary neurons is considered as
dense.

Sparse coding can be described as a trade-off between
the benefits and drawbacks of the dense and local codes
[16] – for example, the speed of learning of the local code is
traded against the high representational capacity allowed
under dense code. Nevertheless, there are also other trade-
offs between the two coding schemes. As detailed below,
local code offers better memory capacity than dense code in
some settings, but provides poorer fault-tolerance and no
generalization. Note that because local code and dense
code are opposite extremes, in principle any case in be-
tween these could be labeled sparse coding (i.e., below 50%
active binary neurons or below 100% active rectified con-
tinuous neurons) (Figure 1A).

Because of potential redundancy, fault-tolerance (i.e.,
the capacity to handle neuronal noise, or loss of a subset of
the neurons) improves as code density increases, whereas
local code is very sensitive to any error or noise. As local
code transforms into sparse code, fault-tolerance improves
owing to increased redundancy of the input signal.

Whereas Figure 1 considers different properties aris-
ing from the code used within the input layer, we next
consider the decoding properties of the output neuron
(Figure 2). Assuming that information is carried only by
excitatory neurons, while the inhibitory interneurons
only provide blanket inhibition, the memory capacity
(i.e., the total number of contexts that can be stored in
the network) increases with the sparseness in the input
layer [1,17]. In this scenario, dense coding is associated
with low memory capacity because of the large interfer-
ence between contexts. In sparse coding, the constraint
of having only excitatory synapses carrying information
has the consequence that the output neuron, in a learnt
stage with optimal memory capacity, will have a large

Dense code Sparse codeLocal code

Ac�ve during context A

Ac�ve during context B

Ac�ve during both context A and B

Ac�vity during context A

Ac�vity during context B

(A) (B) Dense code
Binary ac�va�on func�ons

TRENDS in Neurosciences 

Figure 1. Sparse code is a compromise between local code and dense code. (A) Comparison of coding schemes that differ in their ratio of active neurons: in other words, in

their sparseness. The activities within the population during two hypothetical contexts (context A and context B) are shown as examples of how different contexts are

represented within the population. Note that by our definition only a single context would be active at any time because a context represents the global brain state (i.e., all

the neurons). In local code, a context is represented by the activity of a single neuron, or a small subset of neurons, and different contexts are represented by different

neurons. Notably, the activities of the neurons are not independent because if a neuron is responding to context A, it will not respond to any other context. In dense code, all

neurons are active and their combined activity is used to encode each context. Any state in between the two extreme cases of local and dense code can in principle be

labeled sparse code. The reduction of average activation leads to a reduction in the overlap or interference between the activation during different contexts. (B) In the

special case of binary activation functions, maximal representational capacity is obtained if 50% of the neurons are active during each context. For this reason an average

activation of 50% is usually considered dense code in the binary case.
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