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Local divisors allow a powerful induction scheme on the size of a monoid. We survey 
this technique by giving several examples of this proof method. These applications include 
linear temporal logic, rational expressions with Kleene stars restricted to prefix codes 
with bounded synchronization delay, Church–Rosser congruential languages, and Simon’s 
Factorization Forest Theorem. We also introduce the notion of a localizable language class as 
a new abstract concept which unifies some of the proofs for the results above.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The notion of a local divisor refers to a construction for finite monoids. It appeared in this context first in [4] where it 
was used by the authors as a tool in the proof that local future temporal logic is expressively complete for Mazurkiewicz 
traces with respect to first-order logic. The definition of a local divisor is very simple: Let M be a finite monoid and c ∈ M . 
Then cM ∩ Mc is a semigroup, but it fails to be a submonoid unless c is invertible. If c is not invertible then 1 /∈ cM ∩ Mc
and, as a consequence, |cM ∩ Mc| < |M|. The idea is to turn cM ∩ Mc into a monoid by defining a new multiplication by 
xc ◦ cy = xcy. This is well-defined and Mc = (cM ∩ Mc, ◦, c) becomes a monoid where c is the unit. Moreover, if c is not 
invertible then Mc is a smaller monoid than M; and this makes the construction attractive for induction. (The same idea 
works for {c} ∪ cMc and since {c} ∪ cMc ⊆ cM ∩ Mc there is a choice here.) The original definition for a multiplication of 
type xc ◦ cy = xcy was given for associative algebras. It can be traced back to a technical report of Meyberg, [17]. He coined 
the notion of a local algebra. Just replace M above by a finite dimensional associative algebra (with a unit element) over a 
field k. For example, M is the algebra of n × n matrices over k. If c ∈ M is not invertible then the vector space cM ∩ Mc has 
at least one dimension less and (cM ∩ Mc, +, ◦, c) is again an associative algebra with the unit element c. See also [11] for 
applications of Meyberg’s construction.

Despite (or more accurately thanks to) its simplicity, the local divisor technique is quite powerful, see e.g. [6]. For example, 
it was used in a new and simplified proof for the Krohn–Rhodes Theorem [9]. Very recently, the construction of local 
divisors has also been an essential tool in Kuperberg’s work on a linear temporal logic for regular cost functions [15]. In [7]
we extended a classical result of Schützenberger from finite words to infinite words by showing that ω-rational expressions 
with bounded synchronization delay characterize star-free languages. In 2012 we presented a paper which solved a 25 years 
old conjecture in formal language theory [8]. We showed that regular languages are Church–Rosser congruential. We come 
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back to this result in more detail below. Our result was obtained in two steps. First, we had to show it for regular group 
languages, which is very difficult and technical. This part served as a base for induction. The second part uses induction 
using local divisors. This part is actually easy to explain, it will be done in Section 6.

The outline of the paper is as follows. In Section 3 we give a general framework for the local divisor technique in the 
context of aperiodic languages (i.e., languages recognized by finite aperiodic monoids). We introduce the notion of localizable 
language class as a new abstract concept.

In the remaining sections we give four applications of the local divisor technique. In Section 4 we apply this technique 
to linear temporal logic, and in Section 5 it is used for a characterization of the aperiodic languages in terms of restricted 
rational expressions. In Section 6 we show how to apply the local divisor technique in the context of string rewrite systems. 
Finally, in Section 7 we give a proof of Simon’s Factorization Forest Theorem; the proof is the archetype of how to apply the 
local divisor technique in arbitrary monoids.

2. Local divisors

We will apply the local divisor techniques mainly to monoids. However, it is instructive to place ourselves first in the 
slightly more general setting of semigroups. Let S = (S, ·) be a finite semigroup. A divisor S ′ of S is a homomorphic image 
of a subsemigroup. Let c ∈ S be any element and consider cS ∩ Sc. We can turn the subset cS ∩ Sc into a semigroup by 
defining a new operation ◦ as follows:

xc ◦ cy = xcy.

A direct calculation shows that the operation ◦ is well-defined and associative. Hence, Sc = (cS ∩ Sc, ◦) is a semigroup. 
In order to see that Sc is a divisor consider the following subsemigroup S ′ = {x ∈ S | cx ∈ Sc} of S . Note that c ∈ S ′ . Define 
ϕ : S ′ → Sc by ϕ(x) = cx. It is surjective since z ∈ cS ∩ Sc implies that we can write z = cx with x ∈ S ′ . Moreover, cxy = cx ◦cy
and Sc is the homomorphic image of S ′ . Therefore, Sc is a divisor. We call it the local divisor at c. We want to use Sc for 
induction. Therefore we characterize next when |Sc | < |S|. Recall that e ∈ S is called an idempotent if e2 = e. For every finite 
semigroup there is a natural number ω ∈N such that xω is idempotent for every x ∈ S , for instance ω = |S|!. An element y
is called a unit if it has a left- and right inverse, i.e., if there is a neutral element 1 ∈ S and xy = yx′ = 1 for some x, x′ ∈ S
(and then we have x = xyx′ = x′). Thus, if S contains a unit y, then it is a monoid with neutral element yω . We have the 
following result.

Proposition 2.1. Let S be a semigroup and Sc = (cS ∩ Sc, ◦) be defined as above.

(a) If S is a monoid, then Sc = (cS ∩ Sc, ◦, c) is a monoid and Sc is a divisor in terms of monoids, i.e. a homomorphic image of a 
submonoid S ′ of S.

(b) If c is a unit of S, then S = {x ∈ S | cx ∈ Sc} and ϕ : S → Sc , x 
→ cx is an isomorphism of monoids.
(c) If S is finite and c is not a unit, then |Sc | < |S|.
(d) If cxc = cyc is idempotent in Sc , then cxcy and xcyc are idempotent in S.

Proof. (a): Since S is a monoid we have 1 ∈ S ′ = {x ∈ S | cx ∈ Sc} and Sc is the homomorphic image of the submonoid S ′ .
(b): Trivial.
(c): If cS ∩ Sc = S , then we have cS = S and Sc = S . This implies that c is a unit. Indeed, we have cω S = S = Scω . For 

every element cωx ∈ S we have cω · cωx = cωx. Thus, cω is neutral and cω−1 is the inverse of c, i.e., c is a unit. Therefore, if 
c is not a unit, then |Sc | < |S|.

(d): We have cxcy · cxcy = (
(cxc) ◦ (cyc) ◦ (cxc)

) · y = cxc · y. The last equality uses the fact that cxc = cyc is idempotent 
in Sc . The claim for xcyc is symmetric. �
Remark 2.2. Note that ({cc} ∪ cSc, ◦) is a subsemigroup of (cS ∩ Sc, ◦). Moreover, if S is a monoid, then ({c} ∪ cSc, ◦, c) is a 
submonoid of (cS ∩ Sc, ◦, c). Hence by slight abuse of language, we might call ({cc} ∪ cSc, ◦) (resp. ({c} ∪ cSc, ◦, c)) a local 
divisor of S , too. In addition, if c ∈ S is idempotent, then (cSc, ◦) = (cSc, ·) is the usual local monoid at c. The advantage is 
that {cc} ∪ cSc (resp. {c} ∪ cSc) might be smaller than cS ∩ Sc. However, in worst case estimations there is no difference.

3. Localizable language classes

A language class V assigns to every finite alphabet A a set of languages V(A∗) ⊆ 2A∗
. A language class V is left-localizable

if for all finite alphabets A and T the following properties hold:

(a) ∅, A∗ ∈ V(A∗).
(b) If K , L ∈ V(A∗), then K ∪ L ∈ V(A∗).
(c) For every c ∈ A, the alphabet B = A \ {c} satisfies:

1. If K ∈ V(B∗), then K ∈ V(A∗).
2. If K ∈ V(A∗) and L ∈ V(B∗), then K cL ∈ V(A∗).
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