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We extend the # operator in a natural way and derive new types of counting complexity 
classes. While in the case of #C classes (where C could be some circuit-based class like 
NC1) only proofs for acceptance of some input are being counted, one can also count proofs 
for rejection. The Zap-C complexity classes we propose here implement this idea.
We show that in certain cases Zap-C lies between #C and Gap-C which could help 
understanding the relationship between #C and Gap-C. In particular we consider Zap-NC1

and polynomial size branching programs of bounded and unbounded width. Finally we 
argue about negative proofs in Turing machines and how those relate to open questions.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The setting Besides Turing machines, circuits are a well studied model of computation for capturing low level complexity 
classes. Measures of complexity in circuits include depth and the number of gates, which are roughly speaking an analogue 
to time and space complexity in Turing machines. When regarding parallels between Turing machines and circuits, a natural 
question is, what the counterpart to nondeterminism in circuits is. A nondeterministic Turing machine can have more than 
one accepting computation on some input. In fact, the counterpart to the presence of multiple accepting computations is the 
presence of multiple proof trees in circuits. A proof tree is a sub-tree of the tree unfolding of a circuit, which is a witness 
for acceptance of some input word. When looking at the circuit-based characterization of, say NP, one can observe that the 
number of accepting computations and the number of proof trees coincide [16].

A natural question is, how to compute the number of proof trees in a circuit. It can be verified easily that if we move 
to an arithmetic interpretation of the circuit, it computes precisely the number of proof trees [18]. I.e. we interpret And as 
multiplication and Or as addition. This does not work with negation gates, so we assume w.l.o.g. the circuit to be monotone. 
If we want to address functions counting proof trees in circuits (or equivalently arithmetic circuits), say NC1 circuits, we 
write #NC1.

In general, it is an open question whether #C functions are closed under subtraction (here, the case we are most inter-
ested in, is C = NC1). This motivated another type of counting complexity approach resulting in Gap-C classes. Where #C
functions range over nonnegative integers, Gap-C functions range over integers. The Gap-C functions are realized by arith-
metic circuits with addition, subtraction, and multiplication gates. By [7,1] we know that Gap-C functions only require one 
subtraction gate, which is also the output gate. So Gap-C functions can be presented as a difference of two #C functions, 
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which motivated the naming of Gap-C . That means that each Gap-C function can be computed by a family of arithmetic 
circuits only having a single subtraction gate, which is then the output gate.

Boolean circuits can also compute arithmetic functions. Such a circuit has as many output gates as necessary to display 
the resulting integer in binary representation. We call this the functional version, and for example we get FNC1 as the 
functional version of NC1. Hence, one can ask FNC1 ?= #NC1 or even FNC1 ?= Gap-NC1. By Jung [11] we know that those 
classes lie extremely close, but it is still unknown if they coincide.

We have circuits as one major part of this work. But we also consider branching programs (BP). Starting point is the 
celebrated work of Barrington, who showed that bounded width polynomial size branching programs (BWBP) are equally 
powerful as NC1 circuits. In the case of BPs we are also interested in counting. In BPs a witness for acceptance is a path 
from source to target. By [5], we have that the problem of counting paths can be expressed as matrix multiplication, which 
is computable in #NC1. However we do not know if counting proof trees in NC1 circuits can be performed in #BWBP hence, 
#NC1 ?= #BWBP is an open question.

Contributions on circuits We propose a new type of counting complexity, which fits in between #C and Gap-C very naturally 
if C ∈ {ACi, NCi |i ≥ 0}. The starting point for our definition is the observation that we can extend the notion of a proof tree. 
A (now called positive) proof tree is a witness for a word being accepted. If a word is rejected, there are also witnesses: 
negative proof trees. To our knowledge, negative proof trees haven’t been considered before even though the duality of 
positive and negative proofs is appealing. We call1 our new counting complexity classes Zap-C . The functions in Zap-C are 
of the form �∗ → Z \ {0}. The image is positive if there are positive proof trees and negative in the case of the existence of 
negative proof trees.

The most fundamental result concerning Zap-C is, how to compute these functions. Similar to #C , there is an arithmetic 
interpretation of the circuit which computes exactly the number of positive or negative proofs. By the nature of the Zap

operator, we are not restricted to monotone circuits any more which is different compared to the # case. The second result 
is that in the case of C ∈ {NCi, ACi |i ≥ 0}, the Zap-C functions can be written as differences of #C functions with the 
restriction that the result must not be 0. This uses the fact that each circuit can be transformed in a way that each input 
has exactly either one negative or one positive proof tree. Those two results place Zap-C right between #C and Gap-C . So 
the Zap version of classes might give us new possibilities to examine the differences between the # and the Gap versions. 
As always we are most interested in the NC1 case.

Contributions on branching programs We extend the Zap idea to BPs. To do so, we need an analogon to the negative proof 
trees known from circuits. We found a natural analogue for negative proofs in the case of BPs, which is the notion of cuts. 
A cut in our sense is a partition of the BP’s nodes in two, such that source and target are separated and no undesired edge 
goes between the two parts. Under this definition, it is clear that, given a BP and some input, there is a path, if and only if, 
there is no cut. We show, how BPs are related to Zap-NC1. Also we show a simulation of Zap-NC1 functions with BPs. The 
BPs generated that way are planar but not bounded.

Contributions on Turing machines In the end, we will complete the picture by considering Turing machines and propose a 
way to define negative proofs for them. The class NP will be used as a running example. Like many other classes, NP can be 
characterized by skew circuits. Such a circuit-based characterization is in fact very close to the actual Turing machine and it 
is reasonable to use the negative proofs from the circuits for Turing machines. We then can link prominent open problems 
into our framework.

Organization of the paper In Section 2, we cover the basic definitions. In Section 3, we introduce negative proofs to circuits 
and

• show an arithmetization procedure (Theorem 1).
• show how Zap-C functions can be composed similarly to Gap-C (Theorem 2).

Section 4 extends the idea of negative proofs to branching programs and we show lower and upper bounds for Zap-NC1

in terms of branching programs (Theorem 3). Section 5 proposes negative proofs for Turing machines and Section 6 is the 
discussion.

We thank the anonymous referees for their helpful comments which benefited the paper greatly.

2. Preliminaries

In this paper words are always composed from letters of the alphabet � = {0, 1}. There are simulation methods for 
different alphabets. By Z we denote integers and by N the nonnegative integers. A language L is a subset of �∗ .

1 The naming is motivated by the set of integers Z and Gap.
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